Abstract:
An X-ray tube is provided. The X-ray tube includes an electron beam source including a cathode configured to emit an electron beam. The X-ray tube also includes an anode assembly including an anode configured to receive the electron beam and to emit X-rays when impacted by the electron beam. The X-ray tube further includes a gridding electrode disposed about a path of the electron beam between the electron beam source and the anode assembly. The gridding electrode, when powered at a specific level, is configured to grid the electron beam in synchronization with planned transitions during a dynamic focal spot mode.
Abstract:
In the present invention, a computed tomography system, an X-ray tube used therein and a cathode assembly disposed in the X-ray tube, as well as an associated method of use, is provided that includes a gantry and the X-ray tube coupled to the gantry. The X-ray tube includes the cathode assembly having a pair of emitters for generating an electron beam, where the pair of emitters are disposed in the casing at angles with respect to one another. The X-ray tube further includes a focusing electrode for focusing the electron beam, an extraction electrode which electrostatically controls the intensity of the electron beam, a target for generating X-rays when impinged upon by the electron beam and a magnetic focusing assembly located between the cathode assembly and the target for focusing the electron beam towards the target.
Abstract:
An improved cathode assembly is disclosed. The improved cathode assembly provides a deep channel for holding filament that enables generation of small focal spots, but is not limited in achieving larger focal spot sizes. The cathode assembly includes at least one deep channel and a filament arranged in a deep channel. The deep channel is configured in a cathode cup surface of the cathode assembly. The filament is arranged in the deep channel for enabling emission of electron beams from the cathode assembly.
Abstract:
An X-ray tube is provided. The X-ray tube includes an electron beam source including a cathode configured to emit an electron beam. The X-ray tube also includes an anode assembly including an anode configured to receive the electron beam and to emit X-rays when impacted by the electron beam. The X-ray tube further includes a gridding electrode disposed about a path of the electron beam between the electron beam source and the anode assembly. The gridding electrode, when powered at a specific level, is configured to grid the electron beam in synchronization with planned transitions during a dynamic focal spot mode.
Abstract:
An emitter for a cathode of an X-ray tube is provided that includes a shaped emitting surface. The emitting surface is shaped in a suitable process in order to enable the emitting surface to focus electron beams emitted from the emitting surface on a focal spot on a target of less than 1.0 mm without the need for any additional focusing elements in the X-ray tube.
Abstract:
An emitter device having an emission surface includes a plurality of ligaments configured to emit electrons in response to an applied electric field resulting from an applied electrical voltage. Further, the emitter device includes a plurality of slots configured to provide physical separation between two or more adjacently disposed ligaments of the plurality of ligaments, where one or more slots of the plurality of slots define an electrical path. Moreover, the emitter device includes a low work function layer disposed on at least a portion of a ligament of the plurality of ligaments.
Abstract:
In the present invention, a cathode for an x-ray tube is formed with a large area flat emitter. To reduce the aberrations to a minimum the emission area in the flat emitter has a non-rectangular shape and focusing pads arranged around the emitter. In an exemplary embodiment, the flat emitter has a non-rectilinear polygonal shape for an emission area on the emitter in order to increase the emission current from the emitter at standard voltage levels without the need to run the emitters at a higher temperature, add additional emitters to the cathode and/or to coat the emitters with a low work function material.
Abstract:
Embodiments of the disclosure relate to electron emitters for use in conjunction with X-ray emitting devices. In certain embodiments the emitter includes features that prevent, limit, or control deflection of the electron emitter at operating temperatures. In this manner, the electron emitter may be kept substantially flat or at a desired curvature during operation.
Abstract:
An X-ray tube assembly includes an electron beam transport tube, a beam tube protection assembly, and a control module. The electron beam transport tube includes an opening configured for passage of an electron beam, and includes an inner surface bounding the opening along a length of the electron beam transport tube. The beam tube protection assembly includes a plurality of beam protection electrode segments disposed within the opening of the electron beam transport tube and configured to protect the inner surface of the electron beam transport tube from contact with the electron beam. The control module is configured to determine a direction of the electron beam responsive to information received from the beam tube protection assembly.
Abstract:
In the present invention, a computed tomography system, an X-ray tube used therein and a cathode assembly disposed in the X-ray tube, as well as an associated method of use, is provided that includes a gantry and the X-ray tube coupled to the gantry. The X-ray tube includes the cathode assembly having a pair of emission surfaces for generating an electron beam, where the pair of emission surfaces are disposed in the cathode assembly at angles with respect to one another. The X-ray tube further includes a focusing electrode for focusing the electron beam, an extraction electrode which electrostatically controls the intensity of the electron beam by adjustment of a positive or negative biasing voltage applied to the extraction electrode, a target for generating X-rays when impinged upon by the electron beam and a magnetic focusing assembly located between the cathode assembly and the target for focusing the electron beam towards the target.