Abstract:
An imaging system and detector for obtaining x-ray images of a region of interest (ROI) within an object is provided that does not require movement of the detector and/or object/patient for alignment with the x-ray source. The detector is formed with an array of detector elements disposed on a substrate that has an area larger than the area of the objects/patients to be imaged. In use, the object/patient is positioned between the x-ray source and the detector and the x-ray source is targeted at the ROI. The control mechanism determines the area of the detector aligned with the x-ray source and ROI and operates the selected detector elements in the area struck by the x-rays from the source passing through the ROI of the object/patient. The control mechanism receives image data from the area of the detector formed by the detector elements in order to form images of the ROI.
Abstract:
An x-ray detector, system and related method are described wherein a light redirection layer is provided and used to redirect light, converted from x-rays by a scintillator, to at least one pixel. The light redirection layer comprises at least one light redirecting cell comprising a channel and a light reflecting region, wherein the channel is arranged relative to the at least one pixel to direct the incoming light away from a non-light sensitive part of the at least one pixel and toward the light sensitive part of the at least one pixel.
Abstract:
Organic electronic packages having sealed edges. More specifically, packages having organic electronic devices are provided. A number of sealing mechanisms are provided to hermetically seal the edges of the package to completely protect the organic electronic device from external elements. A sealant may be implemented to completely surround the organic electronic device. Alternatively, edge wraps may be provided to completely surround the organic electronic device.
Abstract:
Organic electronic packages having sealed edges. More specifically, packages having organic electronic devices are provided. A number of sealing mechanisms are provided to hermetically seal the edges of the package to completely protect the organic electronic device from external elements. A sealant may be implemented to completely surround the organic electronic device. Alternatively, edge wraps may be provided to completely surround the organic electronic device.
Abstract:
An x-ray detector assembly is disclosed that includes a mounting substrate having a plurality of electrical contacts, the mounting substrate comprising one of an integrated circuit and a circuit board. The x-ray detector assembly also includes a first electrode patterned on a first portion of a top surface of the mounting substrate, wherein the first electrode is electrically coupled to the plurality of electrical contacts. An organic photodiode layer is formed atop the first electrode and has a bottom surface electrically connected to the first electrode. A second electrode is coupled to a top surface of the organic photodiode layer and a scintillator is coupled to the second electrode.
Abstract:
An x-ray detector, system and related method are described wherein a light redirection layer is provided and used to redirect light, converted from x-rays by a scintillator, to at least one pixel. The light redirection layer comprises at least one light redirecting cell comprising a channel and a light reflecting region, wherein the channel is arranged relative to the at least one pixel to direct the incoming light away from a non-light sensitive part of the at least one pixel and toward the light sensitive part of the at least one pixel.
Abstract:
An x-ray detector assembly is disclosed that includes a mounting substrate having a plurality of electrical contacts, the mounting substrate comprising one of an integrated circuit and a circuit board. The x-ray detector assembly also includes a first electrode patterned on a first portion of a top surface of the mounting substrate, wherein the first electrode is electrically coupled to the plurality of electrical contacts. An organic photodiode layer is formed atop the first electrode and has a bottom surface electrically connected to the first electrode. A second electrode is coupled to a top surface of the organic photodiode layer and a scintillator is coupled to the second electrode.
Abstract:
An imaging system and detector for obtaining x-ray images of a region of interest (ROI) within an object is provided that does not require movement of the detector and/or object/patient for alignment with the x-ray source. The detector is formed with an array of detector elements disposed on a substrate that has an area larger than the area of the objects/patients to be imaged. In use, the object/patient is positioned between the x-ray source and the detector and the x-ray source is targeted at the ROI. The control mechanism determines the area of the detector aligned with the x-ray source and ROI and operates the selected detector elements in the area struck by the x-rays from the source passing through the ROI of the object/patient. The control mechanism receives image data from the area of the detector formed by the detector elements in order to form images of the ROI.