Abstract:
A system for verifying the integrity of a radiation detector is provided. the system includes one or more data modules, one or more data lines, and a controller. The one or more data lines electronically connect one or more detector elements of the radiation detector to the one or more data modules. Each of the detector elements is operative to detect electromagnetic radiation. The controller is operative to induce a voltage in the one or more detector elements, obtain a reading from the one or more detector elements via the one or more data modules; and determine whether the integrity of the radiation detector has been compromised based at least in part on comparing the reading to a benchmark.
Abstract:
An imaging system and detector for obtaining x-ray images of a region of interest (ROI) within an object is provided that does not require movement of the detector and/or object/patient for alignment with the x-ray source. The detector is formed with an array of detector elements disposed on a substrate that has an area larger than the area of the objects/patients to be imaged. In use, the object/patient is positioned between the x-ray source and the detector and the x-ray source is targeted at the ROI. The control mechanism determines the area of the detector aligned with the x-ray source and ROI and operates the selected detector elements in the area struck by the x-rays from the source passing through the ROI of the object/patient. The control mechanism receives image data from the area of the detector formed by the detector elements in order to form images of the ROI.
Abstract:
An imager panel for an x-ray detector for obtaining x-ray images of an object is provided that includes a first portion disposed at the center of the hybrid imager panel that can produce images of a first resolution and a second portion disposed at least partially around the first portion that is capable of producing images of a second resolution. The hybrid imager panel provides a hybrid detector that can be selectively operated to obtain images of varying resolutions corresponding to the first resolution from the first portion, the second resolution from the second portion or a combination thereof.
Abstract:
An x-ray detector for obtaining x-ray images of an object is provided that is capable of increasing the ability of the detector to withstand shock and other types of forces acting on the enclosure to prevent and/or limit damage to the internal components of the detector. The enclosure includes an internal filler/force distribution layer formed from a lightweight, rigid material such as rigid foam and/or a suitable structure, such as a honeycomb or other lattice structure. The material is formed or shaped to fill a layer or portion of the interior of the detector that is otherwise empty space defined between the various internal components of the detector. The position and shape of the force distribution layer determines the path of load distribution across or through the enclosure away from the internal components of the detector and is optimized for shock absorption and/or load distribution.
Abstract:
An x-ray detector may comprise: a moisture-impermeable substrate including a non-monolithic conductive portion integrated with a monolithic dielectric portion; a scintillator and an array of CMOS tiles positioned between the scintillator and the substrate; a cover positioned on the substrate and forming a seal therebetween that semi-hermetically encloses the scintillator and the array of CMOS tiles in a covered sealed region; and analog-to-digital electronics conductively coupled to the array of CMOS tiles and to the conductive portion, wherein the conductive portion transmits signals from the covered sealed region to beyond the seal without disrupting a semi-hermeticity of the seal. In this way, sealing of multiply-tiled CMOS image array detectors within a single x-ray detector can be more simply and reliably achieved.
Abstract:
An imager panel for an x-ray detector for obtaining x-ray images of an object is provided that includes a first portion disposed at the center of the hybrid imager panel that can produce images of a first resolution and a second portion disposed at least partially around the first portion that is capable of producing images of a second resolution. The hybrid imager panel provides a hybrid detector that can be selectively operated to obtain images of varying resolutions corresponding to the first resolution from the first portion, the second resolution from the second portion or a combination thereof.
Abstract:
An imaging system and detector for obtaining x-ray images of a region of interest (ROI) within an object is provided that does not require movement of the detector and/or object/patient for alignment with the x-ray source. The detector is formed with an array of detector elements disposed on a substrate that has an area larger than the area of the objects/patients to be imaged. In use, the object/patient is positioned between the x-ray source and the detector and the x-ray source is targeted at the ROI. The control mechanism determines the area of the detector aligned with the x-ray source and ROI and operates the selected detector elements in the area struck by the x-rays from the source passing through the ROI of the object/patient. The control mechanism receives image data from the area of the detector formed by the detector elements in order to form images of the ROI.
Abstract:
An enclosure for a radiographic device includes a bottom panel, a plurality of sidewalls integrally formed with the bottom panel, whereby the plurality of sidewalls and the bottom panel define a unitary body, and a top panel joined to the plurality of sidewalls and defining an internal space therebetween for housing a radiographic device.
Abstract:
An x-ray detector comprises: a housing, including a cover fastened on a flange of a flanged base and forming a semi-hermetic seal therebetween, the flanged base including a bottom surface and the flange surrounding a perimeter of the bottom surface; and an x-ray imager positioned on the bottom surface, the x-ray imager including a wireless transmitter, wherein the seal semi-hermetically encloses the x-ray imager in the housing, and is positioned nonadjacently to surfaces in contact with the x-ray imager. In this way, a simpler and less costly seal for a digital x-ray panel can be provide; furthermore, the seal is reusable and resealable, facilitating repair and refurbishment of the device.
Abstract:
A flexible x-ray detector and a method and system of using the same to acquire one or more x-ray images are disclosed. The flexible x-ray detector apparatus includes a curvature-fixing holder, which has a predetermined curvature. The curvature-fixing holder has a first end and a second end, which has a perimeter defining an internal slot or recess. The flexible detector is configured to be inserted into the recess of the curvature-fixing holder and follows the predetermined curvature of the recess. The flexible x-ray detector may further include a scintillator and a flexible substrate. A method of using a flexible x-ray detector apparatus as well as a system including one or more flexible x-ray detector apparatus are also disclosed.