Abstract:
A method includes determining an identity of each sensor of a plurality of sensors arranged within an engine system and coupled to a harness of the engine system, loading a calibration for each sensor of the plurality of sensors from a memory based at least in part on the determined identity of the respective sensor, and determining a configuration of the plurality of sensors based at least in part on the determined identities of the plurality of sensors. The plurality of sensors includes exhaust sensors configured to monitor a flow property of engine exhaust.
Abstract:
A method includes receiving a signal indicative of a change in an air-fuel ratio (AFR) for a mixture of air and fuel entering a first combustion chamber of a combustion engine, advancing firing timing of the first combustion chamber, receiving, from a knock sensor, a knock signal indicating that the combustion engine has begun to knock, determining a knock margin of the first combustion chamber based on when the combustion engine begins to knock, and storing the knock margin as associated with the knock timing and the AFR.
Abstract:
A catalyst system may include a catalyst and a first sensor that detects contents of gases entering the catalyst and reports the contents of the gases entering the catalyst to an emissions control module. A second sensor and a third sensor may detect contents of gases exiting the catalyst and report the contents of the gases exiting the catalyst to the emissions control module. The emissions control module may determine an air-fuel ratio based on the contents of gases entering the catalyst and the contents of gases exiting the catalyst. The emissions control module may instruct an air-fuel regulator to operate an engine using the air-fuel ratio.
Abstract:
A method includes receiving a signal indicative of a change in an air-fuel ratio (AFR) for a mixture of air and fuel entering a first combustion chamber of a combustion engine, advancing firing timing of the first combustion chamber, receiving, from a knock sensor, a knock signal indicating that the combustion engine has begun to knock, determining a knock margin of the first combustion chamber based on when the combustion engine begins to knock, and storing the knock margin as associated with the knock timing and the AFR.
Abstract:
An engine control unit configuration security system receives a request with a serial number associated with an engine control unit and a requested engine control unit change. The system determines that the requested engine control unit change is approved and in response generates a code including a serial number associated with the engine control unit and an instruction that causes the engine control unit to implement the requested engine control unit change.
Abstract:
A method includes determining an identity of each sensor of a plurality of sensors arranged within an engine system and coupled to a harness of the engine system, loading a calibration for each sensor of the plurality of sensors from a memory based at least in part on the determined identity of the respective sensor, and determining a configuration of the plurality of sensors based at least in part on the determined identities of the plurality of sensors. The plurality of sensors includes exhaust sensors configured to monitor a flow property of engine exhaust.
Abstract:
An engine control unit configuration security system receives a request with a serial number associated with an engine control unit and a requested engine control unit change. The system determines that the requested engine control unit change is approved and in response generates a code including a serial number associated with the engine control unit and an instruction that causes the engine control unit to implement the requested engine control unit change.
Abstract:
A catalyst system may include a catalyst and a first sensor that detects contents of gases entering the catalyst and reports the contents of the gases entering the catalyst to an emissions control module. A second sensor and a third sensor may detect contents of gases exiting the catalyst and report the contents of the gases exiting the catalyst to the emissions control module. The emissions control module may determine an air-fuel ratio based on the contents of gases entering the catalyst and the contents of gases exiting the catalyst. The emissions control module may instruct an air-fuel regulator to operate an engine using the air-fuel ratio.