Abstract:
A system for removing heat from a turbine includes a component in the turbine having a supply plenum and a return plenum therein. A substrate that defines a shape of the component has an inner surface and an outer surface. A coating applied to the outer surface of the substrate has an interior surface facing the outer surface of the substrate and an exterior surface opposed to the interior surface. A first fluid channel is between the outer surface of the substrate and the exterior surface of the coating. A first fluid path is from the supply plenum, through the substrate, and into the first fluid channel, and a second fluid path is from the first fluid channel, through the substrate, and into the return plenum.
Abstract:
A system for processing a gas stream includes a gathering subsystem configured to collect the gas stream from a well-head and a gas conditioning subsystem for receiving the gas stream from the gathering subsystem and providing physical conditioning of the gas stream. The system includes one or more gas turbines configured to receive and combust a first flow of the conditioned gas stream from the gas conditioning subsystem and coupled with an electrical generator. The system includes one supplemental combustor configured to receive heated exhaust gases from the one or more gas turbines and a second flow of the conditioned gas stream from the gas conditioning subsystem, wherein the at least one supplemental combustor is configured to combust the second flow of the conditioned gas stream and the heated exhaust gases such that an exhaust gas stream flow from the at least one supplemental combustor meets emission regulation requirements.
Abstract:
A turbine system and method of operating is provided. The system includes a compressor configured to generate a compressed low-oxygen air stream and a combustor configured to receive the compressed low-oxygen air stream and to combust a fuel stream to generate a post combustion gas stream. The turbine system also includes a turbine for receiving the post combustion gas stream to generate a low-NOx exhaust gas stream, a heat recovery system configured to receive the low-NOx exhaust gas stream and generate a cooled air stream and an auxiliary compressor configured to generate an oxygen and water vapor deficient cooled and compressed air stream. A portion of the oxygen and water vapor deficient cooled and compressed air stream is directed to the combustor to generate an Oxygen and H2O deficient film on exposed portions of the combustor, and another portion is directed to the turbine to provide a cooling flow.
Abstract:
A turbine assembly is provided. The turbine assembly includes a gas turbine engine including at least one hot gas path component formed at least partially from a ceramic matrix composite material. The turbine assembly also includes a treatment system positioned to receive a flow of exhaust gas from the gas turbine engine. The treatment system is configured to remove water from the flow of exhaust gas to form a flow of treated exhaust gas, and to channel the flow of treated exhaust gas towards the at least one hot gas path component. The at least one hot gas path component includes a plurality of cooling holes for channeling the flow of treated exhaust gas therethrough, such that a protective film is formed over the at least one hot gas path component.
Abstract:
A turbine assembly is provided. The turbine assembly includes a gas turbine engine including at least one hot gas path component formed at least partially from a ceramic matrix composite material. The turbine assembly also includes a treatment system positioned to receive a flow of exhaust gas from the gas turbine engine. The treatment system is configured to remove water from the flow of exhaust gas to form a flow of treated exhaust gas, and to channel the flow of treated exhaust gas towards the at least one hot gas path component. The at least one hot gas path component includes a plurality of cooling holes for channeling the flow of treated exhaust gas therethrough, such that a protective film is formed over the at least one hot gas path component.
Abstract:
A system for removing heat from a turbine includes a component in the turbine having a supply plenum and a return plenum therein. A substrate that defines a shape of the component has an inner surface and an outer surface. A coating applied to the outer surface of the substrate has an interior surface facing the outer surface of the substrate and an exterior surface opposed to the interior surface. A first fluid channel is between the outer surface of the substrate and the exterior surface of the coating. A first fluid path is from the supply plenum, through the substrate, and into the first fluid channel, and a second fluid path is from the first fluid channel, through the substrate, and into the return plenum.
Abstract:
A method for starting and operating a NMHC fueled gas turbine combined cycle power plant includes injecting gaseous NMHC fuel into a gaseous NMHC fuel treatment system, injecting at least one of auxiliary steam, HRSG steam, or HRSG water into the gaseous NMHC fuel treatment system, and mixing the at least one of auxiliary steam, HRSG steam, or HRSG water with the gaseous NMHC fuel in the NMHC fuel treatment system to form a gaseous NMHC fuel mixture. The method further includes injecting the gaseous NMHC fuel mixture into a gaseous NMHC fuel distribution system, and providing the gaseous NMHC fuel mixture through the gaseous NMHC fuel distribution system to a combustor of the NMHC fueled gas turbine.
Abstract:
A method for starting and operating a NMHC fueled gas turbine combined cycle power plant includes injecting gaseous NMHC fuel into a gaseous NMHC fuel treatment system, injecting at least one of auxiliary steam, HRSG steam, or HRSG water into the gaseous NMHC fuel treatment system, and mixing the at least one of auxiliary steam, HRSG steam, or HRSG water with the gaseous NMHC fuel in the NMHC fuel treatment system to form a gaseous NMHC fuel mixture. The method further includes injecting the gaseous NMHC fuel mixture into a gaseous NMHC fuel distribution system, and providing the gaseous NMHC fuel mixture through the gaseous NMHC fuel distribution system to a combustor of the NMHC fueled gas turbine.
Abstract:
A turbine system and method of operating is provided. The system includes a compressor configured to generate a compressed low-oxygen air stream and a combustor configured to receive the compressed low-oxygen air stream and to combust a fuel stream to generate a post combustion gas stream. The turbine system also includes a turbine for receiving the post combustion gas stream to generate a low-NOx exhaust gas stream, a heat recovery system configured to receive the low-NOx exhaust gas stream and generate a cooled air stream and an auxiliary compressor configured to generate an oxygen and water vapor deficient cooled and compressed air stream. A portion of the oxygen and water vapor deficient cooled and compressed air stream is directed to the combustor to generate an Oxygen and H2O deficient film on exposed portions of the combustor, and another portion is directed to the turbine to provide a cooling flow.
Abstract:
A system and method of reducing gas turbine nitric oxide emissions includes a first combustion stage configured to burn air vitiated with diluents to generate first combustion stage products. A second combustion stage is configured to burn the first combustion stage products in combination with enriched oxygen to generate second combustion stage products having a lower level of nitric oxide emissions than that achievable through combustion with vitiated air alone or through combustion staging alone.