Abstract:
A method for assisted reading of automated ultrasound image volumes includes receiving a plurality of scan images generated from an imaging device, wherein the plurality of scan images comprises a chest wall region. The method further includes determining a chest wall model representative of the chest wall region based on the plurality of scan images. The method also includes determining a plurality of segmented scan images segmented along the chest wall region based on the chest wall model. In addition, the method includes determining lesion information using an automated lesion detection technique applied to the plurality of segmented scan images. The method also includes displaying the plurality of scan images along with at least one of the lesion information and the chest wall model.
Abstract:
A method for assisted reading of automated ultrasound image volumes includes receiving a plurality of scan images generated from an imaging device, wherein the plurality of scan images comprises a chest wall region. The method further includes determining a chest wall model representative of the chest wall region based on the plurality of scan images. The method also includes determining a plurality of segmented scan images segmented along the chest wall region based on the chest wall model. In addition, the method includes determining lesion information using an automated lesion detection technique applied to the plurality of segmented scan images. The method also includes displaying the plurality of scan images along with at least one of the lesion information and the chest wall model.
Abstract:
An ultrasound scanning guidance method includes acquiring an image by an ultrasound probe of a target organ during an ultrasound scanning procedure. The acquired image corresponds to a pose of the target organ in an acquired scan plane. The method further includes processing the image by a guidance unit to determine an anatomical context around the target organ based on the acquired image. The processing the image also includes determining a relative location of the acquired scan plane with reference to a standard scan plane based on the pose of the target organ and the anatomical context. The processing further includes generating scanning guidance based on the relative location of the acquired scan plane. The scanning guidance includes information to move the probe towards a standard pose of the target organ. The method also includes presenting the scanning guidance by an output device for aiding continuance of the scanning procedure.
Abstract:
Systems and methods for determining parameters for image analysis are provided. One method includes obtaining ultrasound data of an object, generating an image of the object, and identifying a region of interest in the image. The method also includes determining a plurality of spatially varying parameters for image analysis of the region of interest using prior information for one or more objects of interest, including prior location information for the one or more objects of interest, and wherein the plurality of spatially varying parameters are determined for a plurality of sections of the region of interest and different for at least some of the plurality of sections. The method further includes using the plurality of spatially varying parameters for performing image analysis of the region of interest in the image to determine the location of the one or more objects of interest.
Abstract:
A method for synchronization of a longitudinal data set from a subject includes receiving a first ensemble registration estimate having a first reference image corresponding to a first image ensemble and receiving a second image ensemble different from the first image ensemble. The method includes determining a second reference image based on the second image ensemble and the first reference image. Further, the method includes determining a second ensemble registration estimate based on the first ensemble registration estimate, the second reference image, the first image ensemble and the second image ensemble using an optimization technique. The method further includes generating a synchronized image ensemble corresponding to the first image ensemble and the second image ensemble based on the second ensemble registration estimate. The method also includes determining a medical condition of the subject by a medical practitioner based on the synchronized image ensemble.
Abstract:
A method for synchronization of a longitudinal data set from a subject includes receiving a first ensemble registration estimate having a first reference image corresponding to a first image ensemble and receiving a second image ensemble different from the first image ensemble. The method includes determining a second reference image based on the second image ensemble and the first reference image. Further, the method includes determining a second ensemble registration estimate based on the first ensemble registration estimate, the second reference image, the first image ensemble and the second image ensemble using an optimization technique. The method further includes generating a synchronized image ensemble corresponding to the first image ensemble and the second image ensemble based on the second ensemble registration estimate. The method also includes determining a medical condition of the subject by a medical practitioner based on the synchronized image ensemble.
Abstract:
Systems and methods for determining parameters for image analysis are provided. One method includes obtaining ultrasound data of an object, generating an image of the object, and identifying a region of interest in the image. The method also includes determining a plurality of spatially varying parameters for image analysis of the region of interest using prior information for one or more objects of interest, including prior location information for the one or more objects of interest, and wherein the plurality of spatially varying parameters are determined for a plurality of sections of the region of interest and different for at least some of the plurality of sections. The method further includes using the plurality of spatially varying parameters for performing image analysis of the region of interest in the image to determine the location of the one or more objects of interest.
Abstract:
The present disclosure relates to a method for assessing biological features, the method that includes rendering a graphical user interface allowing a user to select patient cohort information defining one or more characteristics of a patient cohort and allowing a user to select an analysis technique from a plurality of analysis techniques, wherein the analysis technique operates on the patient data from both the first data acquisition modality and the second data acquisition modality to generate a derived variable. The method also includes allowing a user to define a threshold for the derived variable to define a first patient group above the threshold and a second patient group below the threshold for each patient of a patient cohort.