Abstract:
Various methods and systems are provided for an engine capable of receiving liquid and gaseous fuel. In one example, cylinder misfire may be identified based on a misfire monitor. The misfire monitor may detect misfire based on signals from a crankshaft sensor.
Abstract:
A method is presented. The method includes the steps of generating rotation signals corresponding to a plurality of rotations of a rotor physically coupled to a plurality of blades, and determining peak voltages corresponding to the plurality of blades by applying time synchronous averaging technique to blade passing signals using the rotation signals, wherein the peak voltages are representative of clearances of the plurality of blades.
Abstract:
A method is presented. The method includes the steps of generating rotation signals corresponding to a plurality of rotations of a rotor physically coupled to a plurality of blades, and determining peak voltages corresponding to the plurality of blades by applying time synchronous averaging technique to blade passing signals using the rotation signals, wherein the peak voltages are representative of clearances of the plurality of blades.
Abstract:
A method for monitoring health of a valve is presented. The method includes receiving an acoustic emission signal from a sensing device operatively coupled to the valve, selecting a region of interest signal in the acoustic emission signal, determining a plurality of current parameters based on the region of interest signal, and monitoring the health of the valve based on at least the plurality of current parameters, wherein the region of interest signal comprises acoustic emission data generated from initiation of an opening of the valve until the valve is partially opened.
Abstract:
Various methods and systems are provided for detecting a change in turbocharger performance. In one example, a method comprises determining a level of turbocharger imbalance based on output from a turbine speed sensor and generating a signal related to a change in a performance level of the turbocharger if the level of turbocharger imbalance is greater than a threshold.
Abstract:
A system is presented. The system includes a stator component, a rotor component rotating inside the stator component, a plurality of features disposed on the periphery of the stator component or the rotor component, and a processing subsystem for determining at least one of an amount of rotor imbalance and an orientation of the rotor imbalance at least based upon feature-to-feature speed variation of the plurality of features.
Abstract:
Various methods and systems are provided for detecting a change in turbocharger performance. In one example, a method comprises determining a level of turbocharger imbalance based on output from a turbine speed sensor and generating a signal related to a change in a performance level of the turbocharger if the level of turbocharger imbalance is greater than a threshold.
Abstract:
A system is disclosed. The system includes a processing subsystem that determines preliminary voltages corresponding to a plurality of blades based upon blade passing signals (BPS), and generates a plurality of clearance values by normalizing the preliminary voltages for effects of one or more operational parameters, wherein the plurality of clearance values are representative of clearance of the plurality of blades.
Abstract:
A monitoring system and method monitor changes in clearance distances between a sensor and a rotating component of a machine. Imbalance and/or wear in the machine is identified based on the changes in the clearance distances. The system and method optionally both measure the clearance distances and a rotating speed of the rotating component of the machine with the same sensor. In order to identify imbalance in the machine, a spectral energy of the machine can be calculated based on the changes in the clearance distances, and the imbalance in the machine can be identified based on the spectral energy. The system and method can determine a trigger speed of the machine that is associated with the wear in the machine based on the changes in the clearance distance. A remaining useful life of the machine can be estimated based on changes in the trigger speed.
Abstract:
A method is presented. The method includes selecting a first window of signals and a second window of signals from clearance signals representative of clearances between a rotating component and a stationary casing surrounding the rotating component, determining a first signed average power value corresponding to the first window of signals, and a second signed average power value corresponding to the second window of signals, determining a resultant value based upon the first signed average power value and the second signed average power value, and determining one or more defects or potential defects in the rotating component based upon the resultant value.