Abstract:
The invention provides a process for preparing a heatsink system for a heat generating electronic device, comprising the steps of:(a) providing a heat conducting substrate;(b) applying an insulating layer on the heat conducting substrate; and(c) applying a printed circuit on the isolating layer by means of a hot embossing system. The invention further provides a heatsink system obtainable by said process, comprising a heat conducting substrate, an insulating layer that is applied on the heat conducting substrate, and a printed circuit that is applied on the insulating layer, wherein the thickness of the part of the insulating layer which is arranged between the heat conducting substrate and the printed circuit is between 1 and 100 micron.
Abstract:
The invention provides an apparatus for building a three-dimensional article in sequential cross-sectional layers, which apparatus comprises: a powder delivery system comprising one or more reservoirs for delivering a powder and a powder spreading system; a printing system for delivering a liquid; a build chamber comprising a outer wall, an inner wall and a build platform which is movable along the inner wall of the build chamber; and a powder recovery system; wherein more than 25% of the outer wall of the build chamber is in communication with the powder recovery system and/or the build platform is capable of releasing unused powder (directly) from the build chamber in a downward direction into the powder recovery system. The invention further provides a method building a three-dimensional article wherein use is made of said apparatus.
Abstract:
The invention provides a process for preparing a heatsink system for a heat generating electronic device, comprising the steps of: (a) providing a heat conducting substrate; (b) applying an insulating layer on the heat conducting substrate; and (c) applying a printed circuit on the isolating layer by means of a hot embossing system. The invention further provides a heatsink system obtainable by said process, comprising a heat conducting substrate, an insulating layer that is applied on the heat conducting substrate, and a printed circuit that is applied on the insulating layer, wherein the thickness of the part of the insulating layer which is arranged between the heat conducting substrate and the printed circuit is between 1 and 100 micron.
Abstract:
In order to produce ceramic hollow fibers, in particular hollow fiber membranes for microfiltration, ultrafiltration and gas separation, a paste is made filling a polymer binder system with a ceramic powder. The paste is processed by extruding through a spinneret to give hollow fibers. The binder system is removed with the aid of thermal diffusion and the powder particles are sintered to each other.
Abstract:
The present invention relates to a method for fabricating a functional dental element, such as a crown. According to the invention, use is made of a three-dimensional printing technique. The major advantages of the invention are that no mold is needed anymore, which entails a considerable saving of costs, that a great accuracy is achieved, and that the element can be made of different materials.
Abstract:
The present invention relates to a method for fabricating a functional dental element, such as a crown. According to the invention, use is made of a three-dimensional printing technique. The major advantages of the invention are that no mold is needed anymore, which entails a considerable saving of costs, that a great accuracy is achieved, and that the element can be made of different materials.