Abstract:
In the filtering of high temperature (e.g. greater than 400.degree. C.) and high pressure (e.g. greater than 5 bar) gas--such as produced by pressurized fluidized bed combustion or gasification of coal--there is often a buildup of particles on the supporting elements for the filters, and on surrounding structures. This buildup of particles can damage the filter elements, or greatly reduce their effectiveness. This problem is avoided by periodically automatically cleaning the supporting and/or surrounding surfaces of the filters, as by directing high pressure gas streams at the supporting and/or surrounding surfaces. The filters may also be backflushed with compressed gas, as is conventional, at the same time as, or at different times than, when the supporting and/or surrounding structures are cleaned. Conduits with nozzles may be mounted directly on the supporting and/or surrounding surfaces and connected by a pipe with an automatically controlled valve to a source of high pressure fluid.
Abstract:
A method of burning solid fuel having low melting point alkaline compositions, such as alkali metal salts, particularly lignite and salty brown coal. The fuel is introduced into the reaction chamber of a circulating fluidized bed reactor, and is mixed prior to introduction to the reaction chamber with a reactant material capable of reacting with the low melting point alkaline compositions of the fuel to produce high melting point alkali metal compounds during combustion. The temperature in the reaction chamber is kept below the melting point of the formed alkali metal compounds. The reactant material comprises silica oxide or a metal oxide, or hydroxide, of the group consisting of aluminum, calcium, magnesium, iron, titanium, and mixtures of two or more thereof. Kaolin is particularly effective, especially when the molar ratio of Al/(Na and K) is at least 1.0.
Abstract:
A separator for separating solid particles from a hot gas stream comprises a cyclone chamber having an axial gas outlet conduit. The outlet conduit is formed by a plurality of cooling tubes defining between the tubes a plurality of passages for the gas. The outlet conduit is connected to an opening in one or both ends of the cyclone chamber. Solids are separated by centrifugal forces as the gas flows in a curved path in the cyclone chamber and by inertia forces as the gas changes direction to flow into the outlet conduit.
Abstract:
A simple yet effective method and apparatus control the temperature within a fluidized bed reactor within a desired range (e.g. about 800.degree.-950.degree. C.). Particulate solids in the off-gases from the combustion chamber of the reactor are separated out, and pass through one or more of a plurality of return conduits back to the combustion chamber. The temperature of the returning solids is controlled by positively cooling them, utilizing heat exchangers, within one or more of the conduits, and by controlling which of the conduits the solids flow through. Valves at the top of the conduits can control the flow of solids into the conduits. Alternatively U-shaped passageways at the bottom of the conduits between them and the combustion chamber can have fluidizing air injected therein, the injected air controlling the flow of solids out of the conduits into the combustion chamber.
Abstract:
A method of treating materials in a fluidized bed reactor, wherein the material to be treated is brought into contact with hot particles removed from the flue gases coming from the fluidized bed reactor to bring about chemical and/or thermal reactions in the material before it is introduced into the fluidized bed reactor together with recycled particles. Useful components may be recovered in the form of gases, solids or liquids in connection with this treatment.
Abstract:
A fluidized bed reactor uses fluid conduits for supplying fluids (such as liquid, gaseous, or fine solid material in suspension fuels), into a reactor chamber. The fluid conduits extend horizontally from, and substantially perpendicularly to, a side wall into the reactor chamber. The fluid conduits are disposed at a level (e.g. about 100-1000 mm) above the fluidizing gas nozzles in the bottom of the reactor chamber. An upright partition, preferably of refractory material, covers the fluid conduits.
Abstract:
The invention relates to a circulating fluidized bed reactor comprising a particle separator (9) having a horizontal vortex chamber (23). The separator is preferably disposed on top of the combustion chamber (5). The pipes (25) discharging gas from the vortex chamber have been connected to openings (24) disposed on the periphery (19) of the vortex chamber.
Abstract:
A fluidized bed reactor e.g. for the burning of fuels of different calorific values. The bottom part of the combustion chamber is divided into an outer and an inner fluidization zone by a partition wall adjacent to the distributor plate. Heat transfer surfaces are disposed in the outer fluidization zone. Heat can be withdrawn from the outer fluidization zone which is activated when burning fuel having a high calorific value. When burning fuel of lower calorific value the outer fluidization zone is not operated. The inner fluidization zone will be in operation in both cases. The supply of fluidizing gas to the second fluidization zone is controlled in order to maintain predetermined conditions in this zone.
Abstract:
A fluidized bed reactor which is capable of burning material containing incombustible matter which during operation accumulates in the form of large particles in the lower part of the reactor, is provided. A discharge system which causes coarse particles to be discharged in a continuous manner without discharging fine particles or combustible matter is provided. The discharge means comprises a discharge compartment connected to an outlet of the distributor plate of the reactor. An upward flow pipe is centrally disposed in the discharge compartment. Air is supplied to the lower part of the discharge compartment. Coarse particles are withdrawn from the discharge compartment through a discharge pipe. Fine particles are blown back to the reactor through the upward flow pipe.
Abstract:
Apparatus for cleaning high temperature, high pressure gases includes a pressure vessel, and a filtration unit within the pressure vessel. The filtration unit is adapted to communicate with a fluidized bed reactor gas outlet, and includes at least one dirty gas chamber housing a plurality of porous, ceramic filter tubes, and at least one clean gas chamber for receiving clean gas from the ceramic filter tubes. The dirty gas chamber includes a particle outlet for removing particles separated from the gas by the filter tubes. The porous ceramic filter tubes are horizontally oriented within the filtration unit or housing and mounted within water cooled walls of the housing. The fluidized bed reactor and associated cyclone separator may be located within the pressure vessel with the filtration unit, or located outside the pressure vessel and in communication with the filtration unit inside the pressure vessel.