Abstract:
A distance measurement device includes an imaging unit which captures a subject image formed by an imaging optical system forming the subject image indicating a subject, an emission unit which emits directional light as light having directivity along an optical axis direction of the imaging optical system, a light receiving unit which receives reflected light of directional light from the subject, a derivation unit which derives a distance to the subject based on a timing at which directional light is emitted by the emission unit and a timing at which reflected light is received by the light receiving unit, and a control unit which performs control such that at least a part of an imaging period by the imaging unit overlaps at least a part of a distance measurement period by the emission unit, the light receiving unit, and the derivation unit.
Abstract:
A distance measurement device includes a detection unit, an optical path forming unit, a common reduction unit that reduces influence of variation of an optical axis of an image formation optical system, and reduces variation of an optical axis of the directional light, an auxiliary reduction unit that auxiliarily reduces at least one of influence of variation of the optical axis of the image formation optical system or variation of the optical axis of the directional light, and a control unit that, in a case of operating the common reduction unit and the auxiliary reduction unit at the same time, controls the common reduction unit and the auxiliary reduction unit to reduce variation of an irradiation position of the directional light in a subject image received as light by a light receiving section.
Abstract:
A distance measurement device includes an imaging optical system, an imaging unit, an emission unit, a derivation unit which performs a distance measurement to derive a distance to a subject based on a timing at which directional light is emitted by the emission unit and a timing at which reflected light is received by a light receiving unit, a shake correction unit which performs shake correction as correction of shake of the subject image caused by variation of an optical axis of the imaging optical system, and a control unit which performs control such that the shake correction unit does not perform shake correction or performs shake correction with a correction amount smaller than a normal correction amount determined in advance in a case of performing the distance measurement and performs shake correction with the normal correction amount in a case of not performing the distance measurement.
Abstract:
A distance measurement device includes an imaging unit which captures a subject image formed by an imaging optical system, an emission unit which emits directional light as light having directivity along an optical axis direction of the imaging optical system, a light receiving unit which receives reflected light of the directional light from the subject, a derivation unit which derives a distance to the subject based on the timing at which the directional light is emitted and the timing at which the reflected light is received, a display unit which displays the subject image, and a control unit which performs control such that, in a case of performing a distance measurement, the display unit displays the subject image as a motion image and transition is made to a state where actual exposure by the imaging unit is possible at the timing of the end of the distance measurement.
Abstract:
A distance measurement device includes a detection unit, an optical path forming unit, a first reduction unit that reduces, based on a detection result of the detection unit, influence of variation of the optical axis of the image formation optical system, a second reduction unit that is disposed in a different part from the common optical path and reduces variation of the optical axis of the directional light based on the detection result of the detection unit, and a control unit that, in the case of operating the first reduction unit and the second reduction unit at the same time, controls the first reduction unit and the second reduction unit to reduce variation of an irradiation position of the directional light in the subject image received as light by the light receiving section.
Abstract:
A distance measurement device includes an emission unit, a detection unit, a first reduction unit that reduces, based on a detection result of the detection unit, influence of variation of an optical axis of the image formation optical system on a subject image received as light by a light receiving section, a second reduction unit that reduces variation of an optical axis of the directional light with respect to the subject based on the detection result of the detection unit, and a control unit that, in the case of operating the first reduction unit and the second reduction unit at the same time, controls the first reduction unit and the second reduction unit to reduce variation of an irradiation position of the directional light in the subject image received as light by the light receiving section.
Abstract:
A distance measurement device includes an imaging unit which captures a subject image formed by an imaging optical system forming the subject image indicating a subject, an emission unit which emits directional light as light having directivity along an optical axis direction of the imaging optical system, a light receiving unit which receives reflected light of directional light from the subject, a derivation unit which derives a distance to the subject based on a timing at which directional light is emitted by the emission unit and a timing at which reflected light is received by the light receiving unit, and a control unit which performs control such that at least a part of an imaging period by the imaging unit overlaps at least a part of a distance measurement period by the emission unit, the light receiving unit, and the derivation unit.
Abstract:
A distance measurement device includes an imaging optical system, an imaging unit, an emission unit, a derivation unit which performs a distance measurement to derive a distance to a subject based on a timing at which directional light is emitted by the emission unit and a timing at which reflected light is received by a light receiving unit, a shake correction unit which performs shake correction as correction of shake of the subject image caused by variation of an optical axis of the imaging optical system, and a control unit which performs control such that the shake correction unit does not perform shake correction or performs shake correction with a correction amount smaller than a normal correction amount determined in advance in a case of performing the distance measurement and performs shake correction with the normal correction amount in a case of not performing the distance measurement.
Abstract:
A distance measurement device includes an imaging unit which captures a subject image formed by an imaging optical system, an emission unit which emits directional light as light having directivity along an optical axis direction of the imaging optical system, a light receiving unit which receives reflected light of the directional light from the subject, a derivation unit which derives a distance to the subject based on the timing at which the directional light is emitted and the timing at which the reflected light is received, a display unit which displays the subject image, and a control unit which performs control such that, in a case of performing a distance measurement, the display unit displays the subject image as a motion image and transition is made to a state where actual exposure by the imaging unit is possible at the timing of the end of the distance measurement.
Abstract:
A distance measurement device includes an imaging unit, an emission unit which emits directional light as light having directivity to emit the directional light along an optical axis direction of an imaging optical system, a light receiving unit which receives reflected light of the directional light from a subject, a derivation unit which derives a distance to the subject based on a timing at which the directional light is emitted by the emission unit and a timing at which the reflected light is received by the light receiving unit, and a control unit which performs control such that the emission unit sets a timing, at which the directional light is emitted, to a predetermined period during which the influence of the emission of the directional light on an image signal is suppressed.