Abstract:
A distance measurement device includes an emission unit, a detection unit, a first reduction unit that reduces, based on a detection result of the detection unit, influence of variation of an optical axis of the image formation optical system on the subject image received as light by the light receiving section, a second reduction unit that reduces variation of an optical axis of the directional light with respect to the subject based on the detection result of the detection unit, and a control unit that, in the case of operating the first reduction unit and the second reduction unit at the same time, controls the first reduction unit and the second reduction unit to reduce variation of an irradiation position of the directional light in the subject image received as light by the light receiving section.
Abstract:
A distance measurement device includes a detection unit, an optical path forming unit, a first reduction unit that reduces, based on a detection result of the detection unit, influence of variation of the optical axis of the image formation optical system, a second reduction unit that is disposed in a different part from the common optical path and reduces variation of the optical axis of the directional light based on the detection result of the detection unit, and a control unit that, in the case of operating the first reduction unit and the second reduction unit at the same time, controls the first reduction unit and the second reduction unit to reduce variation of an irradiation position of the directional light in the subject image received as light by the light receiving section.
Abstract:
A distance measurement device includes an emission unit, a detection unit, a first reduction unit that reduces, based on a detection result of the detection unit, influence of variation of an optical axis of the image formation optical system on a subject image received as light by a light receiving section, a second reduction unit that reduces variation of an optical axis of the directional light with respect to the subject based on the detection result of the detection unit, and a control unit that, in the case of operating the first reduction unit and the second reduction unit at the same time, controls the first reduction unit and the second reduction unit to reduce variation of an irradiation position of the directional light in the subject image received as light by the light receiving section.
Abstract:
A distance measurement device includes a detection unit, an optical path forming unit, a first reduction unit, based on a detection result of the detection unit, influence of variation of the optical axis of the image formation optical system, a second reduction unit that is disposed in a different part from a common optical path and reduces variation of the optical axis of the directional light with respect to the subject based on the detection result of the detection unit, and a control unit that, in the case of operating the first reduction unit and the second reduction unit at the same time, controls the first reduction unit and the second reduction unit to reduce variation of an irradiation position of the directional light in the subject image received as light by the light receiving section.
Abstract:
A distance measurement device includes a detection unit, an optical path forming unit, a common reduction unit that reduces influence of variation of an optical axis of an image formation optical system, and reduces variation of an optical axis of the directional light, an auxiliary reduction unit that auxiliarily reduces at least one of influence of variation of the optical axis of the image formation optical system or variation of the optical axis of the directional light, and a control unit that, in a case of operating the common reduction unit and the auxiliary reduction unit at the same time, controls the common reduction unit and the auxiliary reduction unit to reduce variation of an irradiation position of the directional light in a subject image received as light by a light receiving section.
Abstract:
An image processing apparatus and method in which not only a partial image in a stereo image but also an image in a large range of near and far sides can be viewed are provided. First to twelfth viewpoint images are generated so that no disparity occurs in a portion specified as a principal object image. First to third viewpoint images viewed at a left end of viewing positions among the first to twelfth viewpoint images are shifted to set disparity of the object image specified as a sub target point at “0”. The tenth to twelfth viewpoint images viewed at a right end of the viewing positions are shifted to set disparity of the object image specified as a sub target point at “0”. The viewing positions are moved in a horizontal direction, to change an object distance of a stereo view image viewed on a lenticular sheet.