Abstract:
A method for manufacturing a semiconductor device includes sequentially stacking a first epitaxial layer, a sacrificial layer, a second epitaxial layer, and a third epitaxial layer on a first substrate, forming a trench which penetrates the third epitaxial layer, the second epitaxial layer, and the sacrificial layer, forming a structure layer on an upper surface of the third epitaxial layer, forming a metal film which covers an inner surface of the trench and the structure layer, forming a second substrate which fills the trench and covers the metal film, and separating the second epitaxial layer, the third epitaxial layer, and the structure layer from the first epitaxial layer.
Abstract:
A light comb generating device according to a disclosed embodiment includes a light source for generating light in a reference wavelength band and outputting the generated light, and an optical comb generator for generating a light comb having a reference comb interval from the output light, wherein the light source changes a wavelength of the output light as much as a reference frequency interval for every reference time interval, the light comb is generated within a wavelength range of the reference frequency interval, and the reference wavelength band may be at least about 3 μm and no greater than about 30 μm.
Abstract:
Provided are an aluminum gallium nitride template and a fabrication method thereof. The fabrication method includes forming an aluminum nitride (AlN) layer on a substrate, forming a first aluminum gallium nitride (AlxGa1-xN) layer on the aluminum nitride (AlN) layer, forming a second aluminum gallium nitride (AlyGa1-yN) layer on the first aluminum gallium nitride (AlxGa1-xN) layer, forming a third aluminum gallium nitride (AlzGa1-zN) layer on the second aluminum gallium nitride (AlyGal-yN) layer, wherein the first aluminum gallium nitride (AlxGa1-xN) layer, the second aluminum gallium nitride (AlyGa1-yN) layer, and the third aluminum gallium nitride (AlzGa1-zN) layer are formed to have crystal defects and a composition ratio of aluminum (where 1>x>y>z>0) that are gradually decreased as heights of the layers are increased.
Abstract translation:提供了一种氮化镓铝模板及其制造方法。 制造方法包括在基板上形成氮化铝(AlN)层,在氮化铝(AlN)层上形成第一氮化镓铝(Al x Ga 1-x N)层,在第一铝氮化镓(AlAlGa1-xN)层上形成第二氮化镓铝 所述第一氮化镓铝(Al x Ga 1-x N)层,在所述第二氮化铝镓(AlyGal-yN)层上形成第三氮化镓铝(AlzGa1-zN)层,其中所述第一氮化镓铝(Al x Ga 1-x N) 第二氮化镓铝(Al y Ga 1-y N)层和第三氮化镓铝(AlzGa1-zN)层形成为具有晶体缺陷和铝(其中1> x> y> z> 0)的组成比为 随着层数的增加而逐渐减小。
Abstract:
The present disclosure relates to a nitride electronic device and a method for manufacturing the same, and particularly, to a nitride electronic device and a method for manufacturing the same that can implement various types of nitride integrated structures on the same substrate through a regrowth technology (epitaxially lateral over-growth: ELOG) of a semi-insulating gallium nitride (GaN) layer used in a III-nitride semiconductor electronic device including Group III elements such as gallium (Ga), aluminum (Al) and indium (In) and nitrogen.
Abstract:
Provided herein is a semiconductor light emitting device capable of increasing the light extraction efficiency and a fabricating method thereof, the device including a buffer layer formed on a substrate; an n-type semiconductor layer formed on the buffer; an active layer formed on a partial area of the n-type semiconductor layer such that the n-type semiconductor layer is exposed; a p-type semiconductor layer formed on the active layer; a transparent conductive layer formed on the p-type semiconductor layer; a first mesa surface formed along a side wall of the active layer from a side wall of the transparent conductive layer; a passivation layer formed along the first mesa surface; and a metal reflectance film formed along the passivation layer such that it re-reflects escaping light, thereby re-reflecting escaping light to increase the light extraction efficiency.
Abstract:
A semiconductor device includes a first semiconductor layer. A second semiconductor layer is disposed on the first semiconductor layer. A structure layer is disposed on the second semiconductor layer. A metal film covers a side surface of the first semiconductor layer, a side surface of the second semiconductor layer, and an upper surface of the structure layer. A flexible substrate covers the metal film.
Abstract:
Disclosed are a light emitting diode including: a buffer layer formed on a substrate; a Distributed Bragg Reflector (DBR) formed in a multilayer structure, in which mask patterns including opening regions and semiconductor layers formed on the mask patterns while being filled in the opening regions of the mask patterns are alternately formed, and formed on the buffer layer; and a light emitting structure formed on the DBR, and a manufacturing method thereof.