Abstract:
The present application relates to a method of generating a downlink frame. The method of generating the downlink frame includes: generating a first short sequence and a second short sequence indicating cell group information; generating a first scrambling sequence and a second scrambling sequence determined by the primary synchronization signal; generating a third scrambling sequence determined by the first short sequence and a fourth scrambling sequence determined by the second short sequence; scrambling the short sequences with the respective scrambling sequences; and mapping the secondary synchronization signal that includes the first short sequence scrambled with the first scrambling sequence, the second short sequence scrambled with the second scrambling sequence and the third scrambling sequence, the second short sequence scrambled with the first scrambling sequence and the first short sequence scrambled by the second scrambling sequence and the fourth scrambling sequence to a frequency domain.
Abstract:
A method of transmitting and receiving a control channel in a wireless communication system is provided. A base station allocates a data channel to a radio resource, adds start position information of the data channel into a payload of a control channel, and performs signaling for indication information on the start position information added into the payload of the control channel to a terminal. Accordingly, the legacy system and the enhanced system can efficiently transmit a control channel.
Abstract:
Data transmission and reception is provided by configuring control channels in a wireless communication system using a plurality of carriers. User equipment (UE) may monitor physical downlink control channel (PDCCH) candidates within common search spaces (CSSs) and User Equipment-specific search spaces (USSs). If the UE is configured with cross-carrier scheduling, when two PDCCH candidates originating from a CSS and a USS, respectively, have cyclic redundancy check (CRC) scrambled by the same Radio Network Temporary Identifier (RNTI) and have a common payload size and the same first control channel element (CCE) index, the UE may interpret that only the PDCCH originating from the CSS is transmitted, thereby solving ambiguity of downlink control information (DCI) detection.
Abstract:
The present application relates to a method of generating a downlink frame. The method of generating the downlink frame includes: generating a first short sequence and a second short sequence indicating cell group information; generating a first scrambling sequence and a second scrambling sequence determined by the primary synchronization signal; generating a third scrambling sequence determined by the first short sequence and a fourth scrambling sequence determined by the second short sequence; scrambling the short sequences with the respective scrambling sequences; and mapping the secondary synchronization signal that includes the first short sequence scrambled with the first scrambling sequence, the second short sequence scrambled with the second scrambling sequence and the third scrambling sequence, the second short sequence scrambled with the first scrambling sequence and the first short sequence scrambled by the second scrambling sequence and the fourth scrambling sequence to a frequency domain.
Abstract:
A base station divides a subframe into a downlink time duration for downlink, an uplink time duration for uplink, and a guard period between the downlink time duration and the uplink time duration. The base station transmits a downlink control channel including information on a downlink packet duration allocated for downlink transmission of a terminal and information on an uplink packet duration allocated for uplink transmission of the terminal to the terminal in the downlink time duration.
Abstract:
Disclosed herein is a method for transmitting, by a terminal, an uplink signal using a first cell type representing a cell using a licensed band frequency and a second cell type representing a cell using an unlicensed band frequency. The terminal configures at least one first radio bearer (RB) being able to use a radio resource for the first cell type and a radio resource for the second cell type for an uplink transmission. The terminal configures at least one second RB being able to use a radio resource for the first cell type for an uplink transmission. The terminal includes at least one first logical channel corresponding to the at least one first RB in a first logical channel group, and the terminal includes at least one second logical channel corresponding to the at least one second RB in a second logical channel group.
Abstract:
A method for receiving a reference signal including receiving a configuration about a subband from the base station through a higher layer signaling, wherein the RS is allocated to the subband; and receiving a subframe including a reference signal resource allocated by a unit of the subband, and an apparatus are provided.
Abstract:
A method and an apparatus for transmitting a resource, and a method for the HARQ retransmission using an unlicensed band include an operation of performing clear channel assessment (CCA) for the unlicensed band; and an operation of occupying a channel of the unlicensed band according to the CCA and determining whether or not the resource is transmitted based on a position of a transmission time interval (TTI) within a channel occupancy time (COT) for the channel.
Abstract:
A terminal measures quality of a radio link by using at least one first orthogonal frequency division multiplexing (OFDM) symbol among OFDM symbols excluding an OFDM symbol including a channel state information (CSI)-reference signal (RS).
Abstract:
A method of and an apparatus therefor searching a cell in a mobile station of a communication system in which a plurality of cells are grouped into a plurality of cell groups, and each cell group includes at least two cells. The method includes detecting a primary synchronization signal and a secondary synchronization signal from a received signal, and identifying a cell based on a combination of the primary synchronization signal and the secondary synchronization signal. The secondary synchronization signal is related to the cell group to which the mobile station belongs and the primary synchronization signal is related to the cell to which the mobile station belongs within the cell group.