Abstract:
An optical coupling apparatus includes a shell in which a sleeve that guides optical coupling is inserted; a ferrule into which an optical fiber collimator stub is inserted, wherein the optical fiber collimator stub is integrated into one with an optical fiber inserted inside the sleeve and converts an optical signal into a collimated beam; and a housing that surrounds the ferrule.
Abstract:
A transmitter for transmitting an optical signal in an optical communication system includes a plurality of light sources configured to output optical signals; a plurality of first optical couplers configured to multiplex the optical signals, which are output from the plurality of light sources, to generate a first optical signal, and output the first optical signal through a first output port and a second output port of each of the plurality of first optical couplers; a first monitoring unit configured to monitor the first optical signal which is output through the second output port of each of the plurality of first optical couplers; and a controller configured to control an optical output of each of the plurality of light sources on the basis of a result of the monitoring.
Abstract:
An optical transceiver of a flexible modulation format. The optical transceiver may include an optical transmitter to convert an electrical signal to an optical signal and transmit the optical signal, an optical receiver to receive and convert the optical signal to an electrical signal, s and a controller to set modulation formats of the optical transmitter and the optical receivers according to modulation format information.
Abstract:
Disclosed herein is an optical transmitter for generating a vestigial sideband (VSB) optical signal. The optical transmitter includes: a modulator configured based on a photonic integrated chip (PIC); an optical fiber block; and a lensed thin film filter implemented between the modulator configured based on the PIC and the optical fiber block. The PIC includes at least one grating coupler, and the lensed thin film filter is disposed so that an angle of an optical signal emitted from a first grating coupler of the PIC coincides with an angle of incident (AOI) of the lensed thin film filter to design the first grating coupler and the lensed thin film filter.
Abstract:
Disclosed herein are an optical receiver module and an operation method thereof. The optical receiver module includes an input part configured to receive a multiplexed optical signal of a plurality of wavelengths, an optical power/wavelength splitter configured to split the multiplexed optical signal into a plurality of channels, a wavelength filter configured to split the split multiplexed optical signal according to the plurality of wavelengths, and an output part configured to convert optical signals split according to the plurality of wavelengths into voltage signals and output the converted voltage signals. Therefore, the optical receiver module has wide bandwidth performance and low adjacent channel crosstalk performance with respect to the multiplexed optical signal.
Abstract:
An apparatus for monitoring an optical signal includes a light absorbing layer formed on an optical waveguide consisting of a core layer and upper and lower cladding layers; and a photodiode comprising electrodes arranged on both the optical waveguide and the light absorbing layer.
Abstract:
Provided is a phase error compensating apparatus. The phase error compensating apparatus may include a waveguide array disposed between a first free propagation region and a second free propagation region and configured to allow a light signal passed through the first free propagation region to move toward the second free propagation region, in which a length of each of the waveguides included in the waveguide array may be adjusted to compensate for a phase error of light signals passed through the waveguides.
Abstract:
A flexible printed circuit board (FPCB) for an optical module includes: a signal via pad connected with a signal lead pin of the optical module; a ground layer spaced apart from the signal via pad; an isolation gap formed between the signal via pad and the ground layer; and a protective layer which is formed at a portion that comprises the isolation gap, and which, when connected with the signal via pad, compensates for parasitic inductance caused by a protruding signal lead pin.
Abstract:
A receptacle-collimator assembly and a multi-wavelength optical receiver module. The receptacle-collimator assembly includes a receptacle configured to receive a wavelength-multiplexed optical signal; and a collimator integrated with the receptacle and configured to generate a collimated beam signal from a multi-wavelength optical signal received from the receptacle and output the beam signal.