Abstract:
Disclosed are an apparatus and a method for transmitting a tag. The apparatus for transmitting a tag converts 2 bits of a plurality of bit data into one symbol using phase information and orthogonal information. The apparatus for transmitting a tag generates a sub-carrier signal by multiplying the symbol by a square wave having a faster period by a predetermined number of times than a period of the symbol, and transmits the sub-carrier signal to a reader
Abstract:
An extended Pulse-Interval Encoding (PIE) modulating method in a Radio Frequency IDentification (RFID) system, wherein the method modulates 2-bit transmitted data and comprises: adjusting a length of a symbol according to a value of the first bit of the transmitted data; and adjusting a length of an energy transfer waiting section according to a value of the second bit of the transmitted data.
Abstract:
A system for managing a disaster based on a grid and an operating method of the system are disclosed. The operating method includes generating one or more models respectively corresponding to one or more sensors, acquiring and storing one or more of one or more pieces of sensing information sensed by the one or more sensors, event information determined based on the one or more pieces of sensing information, and status information of the one or more sensors, in the one or more models, based on multidimensional spatial information based on a grid on which the one or more sensors are disposed, information stored in the one or more models, and disaster information related to the multidimensional spatial information, creating grid-based data to monitor a disaster situation associated with the information stored in the one or more models and/or the multidimensional spatial information, and outputting the created grid-based data.
Abstract:
Provided is a system for detecting flame, which includes a light collecting module configured to collect light emitted from flame and sense location information and intensity information of the collected light, a memory configured to store a program for determining fire information on the basis of the sensed location information and intensity information of the light, and a processor configured to calculate intensity information and fluttering information of the flame from the intensity information of the light by executing the program stored in the memory, to calculate centroid spatial distribution information of the flame from the location information of the light, and to detect whether there is flame on the basis of at least one of the intensity information of the flame, the fluttering information of the flame, and the centroid spatial distribution information.
Abstract:
Provided is an apparatus for detecting smoke based on polarization. The apparatus includes a chamber into which smoke is introduced, a detection unit comprising a light-emitting unit configured to emit light beams having a plurality of different wavelengths into a space in the chamber, and a light-receiving unit configured to receive scattered light from a plurality of light sources, a control unit configured to control an operation of the detection unit, and a fire determination unit configured to distinguish between fire smoke and non-fire analogous smoke by detecting and analyzing a light-receiving signal received by the light-receiving unit, in which horizontal polarization and vertical polarization are applied to the plurality of light sources of the light-emitting unit and the light-receiving unit.
Abstract:
The present invention is directed to reducing non-fire alarms by distinguishing between smoke caused by an actual fire and non-fire smoke generated in daily life when an event suspected to be a fire occurs. The present invention provides an apparatus and method for determining whether a fire occurs using a smoke detector, which includes a light emitter for generating multiple wavelengths, a light receiver configured to detect light scattered by particles of smoke, and a fire determiner for checking whether the strength of a signal of the detected scattered light exceeds a threshold and generating an alarm, to use characteristics of multiple wavelengths in a photoelectric fire detection apparatus. The fire determiner calculates normalized values by normalizing measured values for the scattered light, and calculates a singular value from the normalized values as a criterion for determining whether the smoke is caused by a fire or a non-fire.
Abstract:
A smoke detection apparatus based on multiple wavelengths is provided, which includes: a chamber configured to receive an inflow of a smoke; a detector including a light emitter having a plurality of light sources that radiate light having a plurality of different wavelengths into a space in the chamber, and a light receiver configured to receive scattered light by the plurality of light sources; and a controller configured to control an operation of the detector and to distinguish between fire smoke and non-fire quasi-smoke by detecting and analyzing a light receiving signal of the light receiver.
Abstract:
Provided is a Raman scattering measurement apparatus including a light source which emits light to smoke particles, a filter configured to block light which is incident to the smoke particles and passes through the particle and to allow Raman scattered light to pass therethrough, and a photodetector which detects the Raman scattered light passing through the filter in order to distinguish fire smoke generated due to a true fire from non-fire smoke generated due to daily life or industrial activity. The present invention also provides a fire determination apparatus including a unit which reads a Raman shift from Raman scattered light detected by the photodetector of the Raman scattering measurement apparatus, estimates a smoke component from the read Raman shift, and determines fire/non-fire from the estimated smoke component and a method thereof.
Abstract:
Optical data is collected from an optical sensor of a dual wavelength, and in order to detect the fire from the collected optical data, an average value of a first wavelength, an average value of a second wavelength, and a ratio of the average values of the two wavelengths are calculated, and an amount of change of a slope of the ratio is used to detect the fire and determine the fire occurrence time. From the determined fire occurrence time, fire features are extracted from the optical data in real time according to defined rules to configure a data set. The data set may be used for learning and inference techniques to identify a fire or non-fire, a fire source, a combustion material, and the like.
Abstract:
An RFID reader, RFID tag, and method thereof for performing a write check of tag data. According to an exemplary embodiment, the RFID reader may include: a transmitter to transmit a write check command to an RFID tag; a receiver to receive a response including a check value of data, which needs a write check, from an RFID tag that has received the write check command; and a controller to perform information transmission and reception processes, and check data written on the RFID tag by using the received response.