Abstract:
An apparatus and method for verifying broadcast content object identification based on web data. The apparatus includes: a web data processor configured to collect and process web data related to broadcast content and create content knowledge information by tagging the web data to the broadcast content; a content knowledge information storage portion configured to store the content knowledge information; and an object identification verifier configured to verify a result of identifying an object contained in the broadcast content, using the content knowledge information.
Abstract:
Provided is a system for detecting flame, which includes a light collecting module configured to collect light emitted from flame and sense location information and intensity information of the collected light, a memory configured to store a program for determining fire information on the basis of the sensed location information and intensity information of the light, and a processor configured to calculate intensity information and fluttering information of the flame from the intensity information of the light by executing the program stored in the memory, to calculate centroid spatial distribution information of the flame from the location information of the light, and to detect whether there is flame on the basis of at least one of the intensity information of the flame, the fluttering information of the flame, and the centroid spatial distribution information.
Abstract:
Provided is an apparatus for detecting smoke based on polarization. The apparatus includes a chamber into which smoke is introduced, a detection unit comprising a light-emitting unit configured to emit light beams having a plurality of different wavelengths into a space in the chamber, and a light-receiving unit configured to receive scattered light from a plurality of light sources, a control unit configured to control an operation of the detection unit, and a fire determination unit configured to distinguish between fire smoke and non-fire analogous smoke by detecting and analyzing a light-receiving signal received by the light-receiving unit, in which horizontal polarization and vertical polarization are applied to the plurality of light sources of the light-emitting unit and the light-receiving unit.
Abstract:
The present invention is directed to reducing non-fire alarms by distinguishing between smoke caused by an actual fire and non-fire smoke generated in daily life when an event suspected to be a fire occurs. The present invention provides an apparatus and method for determining whether a fire occurs using a smoke detector, which includes a light emitter for generating multiple wavelengths, a light receiver configured to detect light scattered by particles of smoke, and a fire determiner for checking whether the strength of a signal of the detected scattered light exceeds a threshold and generating an alarm, to use characteristics of multiple wavelengths in a photoelectric fire detection apparatus. The fire determiner calculates normalized values by normalizing measured values for the scattered light, and calculates a singular value from the normalized values as a criterion for determining whether the smoke is caused by a fire or a non-fire.
Abstract:
A smoke detection apparatus based on multiple wavelengths is provided, which includes: a chamber configured to receive an inflow of a smoke; a detector including a light emitter having a plurality of light sources that radiate light having a plurality of different wavelengths into a space in the chamber, and a light receiver configured to receive scattered light by the plurality of light sources; and a controller configured to control an operation of the detector and to distinguish between fire smoke and non-fire quasi-smoke by detecting and analyzing a light receiving signal of the light receiver.
Abstract:
Optical data is collected from an optical sensor of a dual wavelength, and in order to detect the fire from the collected optical data, an average value of a first wavelength, an average value of a second wavelength, and a ratio of the average values of the two wavelengths are calculated, and an amount of change of a slope of the ratio is used to detect the fire and determine the fire occurrence time. From the determined fire occurrence time, fire features are extracted from the optical data in real time according to defined rules to configure a data set. The data set may be used for learning and inference techniques to identify a fire or non-fire, a fire source, a combustion material, and the like.
Abstract:
An apparatus and method for recognizing an object using correlation information about an object and content-related information which is generated based on the content-related information. The apparatus includes a data classifier, a data analyzer, a correlation manager, and an object identifier.