Abstract:
A trip cam is for an operating handle assembly of an electrical switching apparatus. The electrical switching apparatus includes a housing and a number of poles. The operating handle assembly has an operating handle partially extending into the housing. The trip cam includes a mounting portion structured to be disposed in the housing, and an operating handle protrusion extending from the mounting portion and being structured to engage the operating handle.
Abstract:
A contact assembly is for an electrical switching apparatus having a housing. The contact assembly includes a movable arm having a movable contact, and an extension apparatus structured to be disposed on the housing. The extension apparatus includes a U-shaped link member having a first leg, a second leg, and a middle portion connecting the first leg to the second leg. The first leg at least partially extends into the movable arm. The second leg is structured to be disposed on the housing.
Abstract:
Plug-on neutral circuit breakers include a housing, a plug-on neutral clip with legs extending out from the housing and a mechanical coupler of a lockout latch assembly in the housing coupled to a latch link and the plug-on neutral clip to move the mechanical coupler in response to a change in position of the plug-on neutral clip between first and second positions associated with partially and fully installed orientations to thereby provide a lockout state when not in the second position.
Abstract:
Circuit breakers with handles have common trip cams with an integrated spring and trip cam base. The integrated spring directly contacts the armature in lieu of having the trip cam base formed to do so thereby allowing the use of alternative trip cam base configurations and materials from conventional relatively expensive materials.
Abstract:
A trip cam is for an indication assembly of an electrical switching apparatus. The electrical switching apparatus includes a housing and a number of poles. Each of the number of poles includes a pair of separable contacts and an operating mechanism structured to open and close the separable contacts. The indication assembly includes a cradle member. The trip cam includes: a mounting portion; a transfer leg extending from the mounting portion, the transfer leg being structured to cooperate with each of the number of poles; a driving leg extending from the mounting portion in a first direction, the driving leg being structured to be driven by the cradle member; and a trip indicator leg including a base portion. The base portion extends from the mounting portion in a second direction generally opposite the first direction.
Abstract:
A trip mechanism includes a bimetal having a first side and an opposite second side, a magnetic yoke disposed proximate the first side of the bimetal, and a magnetic armature pivotally connected to the bimetal and disposed proximate the opposite second side thereof. The armature has a first side with a surface, an opposite second side, and an opening extending from the first side to the opposite second side of the magnetic armature. The opening has a latch surface structured to engage the latch surface of an operating mechanism. The first side of the magnetic armature is structured to engage the opposite second side of the bimetal. At least one of the bimetal and the magnetic armature is structured to provide an offset between the bimetal and the surface of the first side of the magnetic armature at the opening of the magnetic armature.
Abstract:
Circuit breakers with handles have common trip cams with an integrated spring and trip cam base. The integrated spring directly contacts the armature in lieu of having the trip cam base formed to do so thereby allowing the use of alternative trip cam base configurations and materials from conventional relatively expensive materials.
Abstract:
The disclosed concept relates to compositions and methods for the manufacture of electrically resistive, thermally conductive electrical switching apparatus. The composition includes a polymer component and a nanofiber component. The thermal conductivity of the nanofiber component is higher than the thermal conductivity of the polymer component such that the electrical switching apparatus which includes the composition of the disclosed concept has improved heat dissipation as compared to an electrical switching apparatus constructed of the polymer component in the absence of the nanofiber component. Further, the disclosed concept relates to methods of towering the internal temperature of an electrically resistive, thermally conductive electrical switching apparatus by forming the internals of the apparatus, e.g., circuit breakers, and/or the enclosure from the composition of the disclosed concept.
Abstract:
The disclosed concept relates to compositions and methods for the manufacture of electrically resistive, thermally conductive electrical switching apparatus. The composition includes a polymer component and a nanofiber component. The thermal conductivity of the nanofiber component is higher than the thermal conductivity of the polymer component such that the electrical switching apparatus which includes the composition of the disclosed concept has improved heat dissipation as compared to an electrical switching apparatus constructed of the polymer component in the absence of the nanofiber component. Further, the disclosed concept relates to methods of towering the internal temperature of an electrically resistive, thermally conductive electrical switching apparatus by forming the internals of the apparatus, e.g., circuit breakers, and/or the enclosure from the composition of the disclosed concept.
Abstract:
Circuit interrupters such as breakers with a metal arc chute having a base and sidewalls extending outward from the base forming an open cavity, a movable arm holding a movable contact adjacent to the arc chute, a line conductor electrically connected to a stationary contact residing adjacent to the arc chute facing the movable contact and a three-dimensional molded arc quenching insert attached to the metal arc chute, and residing in the cavity of the metal arc chute between the stationary and movable contacts. The insert has an arc quenching material that optionally releases a gas such as hydrogen during an arcing event.