Abstract:
A first process to produce polycarbamate comprising providing urea in liquid form; and adding the liquid urea to a polyol is provided. A second process for producing polycarbamate comprising adding solid urea to a polyol in liquid form to form a reaction mixture is provided. Also provided is a reaction product produced by the first process or second process.
Abstract:
The present invention relates to a composition comprising triethylene glycol disorbate and triethylene glycol monosorbate, at a disorbate to monosorbate weight-to-weight ratio of from 19:1 to 99:1. The composition of the present invention is useful as a low VOC coalescent in coatings formulations.
Abstract:
A process to prepare polycarbamate comprising adding urea to a polyol in the presence of at least one catalyst selected from the group consisting of compounds having the following formula MmZn; wherein M is a divalent metal, and Z is an anionic functionality or a functionality capable of forming a covalent bond with M and wherein n times a valence number of Z equals X and m times two equals Y wherein the absolute value of X equals the absolute value of Y is provided. Also provided are a polycarbamate produced according to the process and a coating composition comprising the polycarbamate.
Abstract:
Conjugated diene polymers such as a styrene-butadiene copolymer are sequentially brominated by reaction with a quaternary ammonium tribromide or quaternary phosphonium tribromide and halohydrated by reaction with an N-haloimide compound. This produces a brominated and halohydrated polymer with very good thermal stability. The product is useful as a flame retardant in a variety of polymer systems.
Abstract:
Conjugated diene polymers such as a styrene-butadiene copolymer are sequentially brominated by reaction with a quaternary ammonium tribromide or quaternary phosphonium tribromide and halohydrated by reaction with an N-haloimide compound. This produces a brominated and halohydrated polymer with very good thermal stability. The product is useful as a flame retardant in a variety of polymer systems.
Abstract:
A process to prepare polycarbamate comprising adding urea to a polyol in the presence of at least one catalyst selected from the group consisting of compounds having the following formula MmZn; wherein M is a trivalent metal, and Z is an anionic functionality or a functionality capable of forming a covalent bond with M and wherein n times a valence number of Z equals X and m times three equals Y wherein the absolute value of X equals the absolute value of Y is provided. Also provided are a polycarbamate produced according to the process and a coating composition comprising the polycarbamate.
Abstract:
A process to prepare polycarbamate comprising adding urea to a polyol in the presence of at least one catalyst selected from the group consisting of compounds having the following formula MmZn; wherein M is a divalent metal, and Z is an anionic functionality or a functionality capable of forming a covalent bond with M and wherein n times a valence number of Z equals X and m times two equals Y wherein the absolute value of X equals the absolute value of Y is provided. Also provided are a polycarbamate produced according to the process and a coating composition comprising the polycarbamate.
Abstract:
A first process to produce polycarbamate comprising providing urea in liquid form; and adding the liquid urea to a polyol is provided. A second process for producing polycarbamate comprising adding solid urea to a polyol in liquid form to form a reaction mixture is provided. Also provided is a reaction product produced by the first process or second process.
Abstract:
A first process to produce polycarbamate comprising providing urea in liquid form; and adding the liquid urea to a polyol is provided. A second process for producing polycarbamate comprising adding solid urea to a polyol in liquid form to form a reaction mixture is provided. Also provided is a reaction product produced by the first process or second process.
Abstract:
A process to prepare polycarbamate comprising adding urea to a polyol in the presence of at least one catalyst selected from the group consisting of compounds having the following formula MmZn; wherein M is a tetravalent metal, and Z is an anionic functionality or a functionality capable of forming a covalent bond with M and wherein n times a valence number of Z equals X and m times four equals Y wherein the absolute value of X equals the absolute value of Y is provided. Also provided are a polycarbamate produced according to the process and a coating composition comprising the polycarbamate.