Abstract:
A pixel cell with improved lag characteristics without increased noise. The pixel cell according to embodiments of the invention includes a photo-conversion device and a floating diffusion region switchably coupled to the photo-conversion device. The pixel cell includes a reset transistor, which has a first terminal electrically connected to the floating diffusion region and a second terminal switchably coupled to first and second voltage sources. The first voltage source is higher than the second voltage source. The pixel cell operates by returning a potential on the photo-conversion device to a value approximately equal to a value of a potential barrier between the photo-conversion device and the floating diffusion region prior to generating charge in the photo-conversion device.
Abstract:
A pixel cell that utilizes a JFET transistor, instead of a CMOS transistor, linked to each pixel's photosensor as an anti-blooming and/or transfer transistor to provide an overflow path for electrons during charge integration. Using a JFET transistor reduces charge uncertainty and fixed pattern noise in the imaging system.
Abstract:
An imager may include depth sensing pixels that provide an asymmetrical angular response to incident light. The depth sensing pixels may each include a substrate region formed from a photosensitive portion and a non-photosensitive portion. The depth sensing pixels may include mechanisms that prevent regions of the substrate from receiving incident light. Depth sensing pixel pairs may be formed from depth sensing pixels that have different asymmetrical angular responses. Each of the depth sensing pixel pairs may effectively divide the corresponding imaging lens into separate portions. Depth information for each depth sensing pixel pair may be determined based on the difference between output signals of the depth sensing pixels of that depth sensing pixel pair. The imager may be formed from various combinations of depth sensing pixel pairs and color sensing pixel pairs arranged in a Bayer pattern or other desired patterns.
Abstract:
Apparatus, systems, and methods are described to assist in reducing dark current in an active pixel sensor. In various embodiments, a potential barrier arrangement is configured to block the flow of charge carriers generated outside a photosensitive region. In various embodiments, a potential well-potential barrier arrangement is formed to direct charge carriers away from the photosensitive region during an integration time.
Abstract:
Apparatus, systems and methods are described to assist in reducing dark current in an active pixel sensor. A potential barrier arrangement is configured to block the flow of charge carriers generated outside a photosensitive region. In various embodiments, a potential well-potential barrier arrangement is formed to direct charge carriers away from the photosensitive region during an integration time.
Abstract:
Depth sensing imaging pixels include pairs of left and right pixels forming an asymmetrical angular response to incident light. A single microlens is positioned above each pair of left and right pixels. Each microlens spans across each of the pairs of pixels in a horizontal direction. Each microlens has a length that is substantially twice the length of either the left or right pixel in the horizontal direction; and each microlens has a width that is substantially the same as a width of either the left or right pixel in a vertical direction. The horizontal and vertical directions are horizontal and vertical directions of a planar image array. A light pipe in each pixel is used to improve light concentration and reduce cross talk.
Abstract:
An imager with a slew rate control circuit that uses multiple digital control signals to control the rising and falling slew rates of boosted signals, such as transistor gate signals, and/or supply voltages used by an imager or other device. By using digital signals, the invention provides slew rate control that is less affected by power supply, temperature and process variations.
Abstract:
Systems and methods are provided for calibrating image sensors. In some embodiments, a processing module of an image system can automatically perform a self-calibration process after a production unit of an image sensor has been integrated into an end product system. For example, the processing module can calibrate a production unit based on one or more reference pixels of the production unit, where the one or more reference pixels have minimal color filtration. In some embodiments, the processing module may perform local calibrations by correcting specifically for spatial variations in a color filter array (“CFA”). In some embodiments, the processing module can perform global calibrations by correcting for optical density variations in the CFA. In some embodiments, a processing module can determine whether the cause of production variations is related to production variations of a CFA or production variations of an infrared (“IR”) cutoff filter.
Abstract:
An imager may include depth sensing pixels that provide an asymmetrical angular response to incident light. The depth sensing pixels may each include a substrate region formed from a photosensitive portion and a non-photosensitive portion. The depth sensing pixels may include mechanisms that prevent regions of the substrate from receiving incident light. Depth sensing pixel pairs may be formed from depth sensing pixels that have different asymmetrical angular responses. Each of the depth sensing pixel pairs may effectively divide the corresponding imaging lens into separate portions. Depth information for each depth sensing pixel pair may be determined based on the difference between output signals of the depth sensing pixels of that depth sensing pixel pair. The imager may be formed from various combinations of depth sensing pixel pairs and color sensing pixel pairs arranged in a Bayer pattern or other desired patterns.