摘要:
Methods and compositions using a site-specific integration system are combined with methods and compositions which deliver compositions via microinjection directly to the embryo sac of a plant. The methods allow for various components of the site-specific recombination system to be introduced into the cellular environment of the embryo sac a composition comprising at least one component of the site-specific recombination system is injected into an embryo sac, providing improved efficiency of expression, recombination, integration, exchange, excision and/or inversion of a polynucleotide of interest. The polynucleotide of interest may be stably integrated into the genome of the egg cell, zygote, embryo, or endosperm, and tissues, plant parts, and/or plants produced therefrom. Cells, egg cells, zygotes, embryos, endosperm, tissues, seeds, and/or plants produced by the methods and comprising the polynucleotide(s) of interest are also provided.
摘要:
The present invention provides methods and compositions which deliver Agrobacterium via microinjection directly into the embryo sac. At the time of injection, the embryo sac can comprise an egg cell, or alternatively, the embryo sac can be fertilized and comprise either a zygote or an embryo. Once inside the embryo sac, the Agrobacterium harboring a T-DNA having a polynucleotide of interest can express of the polynucleotide of interest in the plant. Further, the Agrobacterium can transfer the T-DNA having the polynucleotide of interest to the plant nucleus to produce a transformed plant. The polynucleotide of interest may be stably integrated into the genome of the egg cell, zygote, embryo, or endosperm, and any tissue, plant part, and/or plant generated therefrom.
摘要:
Methods and compositions using populations of randomized modified FRT recombination sites to identify, isolate and/or characterize modified FRT recombination sites are provided. Kits comprising the library populations of FRT sites are also provided, as are methods to make a library of modified FRT recombination sites. The recombinogenic modified FRT recombination sites can be employed in a variety of methods for targeted recombination of polynucleotides of interest.
摘要:
Antisense expression of a stearoyl-ACP desaturase gene in sunflower results in more than a four-fold increase in seed stearate, and can enhance palmitate content as well. Thus, sunflower oil containing over 40 percent saturated fatty acids can be produced, which is desirable in the context of various products, such as coating fat, margarine, soap and shortening.
摘要:
Methods and compositions for modulating development and defense response are provided. Nucleotide sequences encoding a LOX protein are provided. Nucleotide sequences comprising the LOX promoter are also provided. The sequences can be used in expression cassettes for modulating development, developmental pathways, and the plant defense response. Transformed plants, plant cells, tissues, and seed are also provided.
摘要:
Methods for increasing resistance in plants to pathogens by the expression of a hydrogen peroxide/reactive oxygen species producing enzyme or an oxalate degrading enzyme. The present invention relates to a method of producing a pathogen resistant hybrid plant by crossing the appropriate transgenic expressing a hydrogen peroxide/reactive oxygen species producing enzyme or an oxalate degrading enzyme with pathogen tolerant lines or inbreds obtained through conventional genetic manipulations, or by transformation of tolerant plants or plant tissues with a hydrogen peroxide/reactive oxygen species producing gene or by altering the expression of an endogenase hydrogen peroxide/reactive oxygen species producing gene. The synergistic effect of expression of a hydrogen peroxide/reactive oxygen species producing enzyme or an oxalate degrading enzyme in a tolerant background gives significant and unexpectedly high resistance to the pathogens.
摘要:
Compositions and methods for the efficient co-transformation of a plant are provided. Novel compositions are Agrobacterium strains that have been engineered to comprise at least two binary vector plasmids in addition to a helper plasmid comprising the vir functions. Each of the binary vectors comprises its own T-DNA borders flanking a heterologous nucleotide sequence of interest. Methods of the invention comprise the use of these novel multiple-binary vector Agrobacterium strains to co-transform a plant. In this manner, heterologous nucleotide sequences of interest residing on different binary vectors can be independently introduced into the plant in a single transformation event and incorporated in the plant's nuclear DNA in an unlinked manner. The invention also provides for regenerated, fertile transgenic plants, transgenic seeds produced therefrom, and T1 and subsequent generations.
摘要:
Methods of making a targeted modification in a male fertility gene in the genome of a plant are disclosed. The methods involve contacting a plant cell with an engineered double-strand-break-inducing agent capable of inducing a double-strand break in a target sequence in the male fertility gene and identifying a cell comprising an alteration in the target sequence. Also disclosed are plants, plant cells, plant parts, and seeds comprising a male fertility gene with an alteration in a male fertility gene. Nucleic acid molecules comprising male fertility genes with at least one targeted modification therein, optimized nucleic acid molecules encoding endonucleases that are engineered double-strand-break-inducing agents and expression cassettes, host cells, and plants comprising one or more of the nucleic acid molecules are further disclosed.
摘要:
Methods and compositions using populations of randomized modified FRT recombination sites to identify, isolate and/or characterize modified FRT recombination sites are provided. The recombinogenic modified FRT recombination sites can be employed in a variety of methods for targeted recombination of polynucleotides of interest, including methods to recombine polynucleotides, assess promoter activity, directly select transformed organisms, minimize or eliminate expression resulting from random integration into the genome of an organism, such as a plant, remove polynucleotides of interest, combine multiple transfer cassettes, invert or excise a polynucleotide, and identify and/or characterize transcriptional regulating regions are also provided.