Abstract:
A method of manufacturing an optical fiber base material includes: forming a porous glass base material by depositing glass particles; providing a vessel which employs a composite tube, the composite tube including a portion formed by jacketing a first quartz glass containing aluminum equal to or less than 0.01 ppm with a second quartz glass containing aluminum equal to or more than 15 ppm; introducing dehydration reaction gas and inert gas into the vessel; heating the jacketed portion in the vessel which contains the dehydration reaction gas and the inert gas; and inserting the porous glass base material into the heated vessel to dehydrate and sinter the porous glass base material.
Abstract:
A method of manufacturing an optical fiber base material includes: forming a porous glass base material by depositing glass particles; providing a synthetic quartz glass vessel at least partly made of quartz glass which contains aluminum equal to or less than 0.01 ppm; introducing dehydration reaction gas and inert gas into the vessel; heating a portion made of quartz glass which contains aluminum equal to or less than 0.01 ppm in the vessel that contains the dehydration reaction gas and the inert gas; and inserting the porous glass base material into the heated vessel to dehydrate and sinter the porous glass base material.
Abstract:
Provided is hydrogen supply equipment that, when switching hydrogen supplied to equipment using hydrogen from (i) hydrogen produced at a normal temperature or hydrogen stored at a normal temperature to (ii) hydrogen stored at a low temperature, supplies the equipment using hydrogen with normal hydrogen obtained by returning the hydrogen at the low temperature to a normal temperature and then passing this hydrogen through equipment for accelerating a conversion from parahydrogen to orthohydrogen.
Abstract:
There is provided an apparatus for supplying a hydrogen gas to a quartz glass manufacturing apparatus including a burner that generates an oxyhydrogen flame when supplied with the hydrogen gas, where the apparatus includes: a first hydrogen supply system that supplies a hydrogen gas in which isomers are in equilibrium; a second hydrogen supply system that supplies a hydrogen gas in which isomers are out of equilibrium; a flow rate control section that includes: a valve that changes a flow rate of the hydrogen gas to be supplied to the burner; a first flow rate measuring section that measures the flow rate of the hydrogen gas to be supplied to the burner by measuring a heat capacity; and a control section that controls the valve in such a manner that a measured value obtained by the first flow rate measuring section approaches a set value input from outside; a second flow rate measuring section that measures the flow rate of the hydrogen gas to be supplied to the burner by measuring a different factor than the heat capacity; and a set value compensating section that compensates the set value by multiplying the set value by a ratio between the measured value obtained by the first flow rate measuring section and a measured value obtained by the second flow rate measuring section.
Abstract:
Provided is hydrogen supply equipment that, when switching hydrogen supplied to equipment using hydrogen from (i) hydrogen produced at a normal temperature or hydrogen stored at a normal temperature to (ii) hydrogen stored at a low temperature, supplies the equipment using hydrogen with normal hydrogen obtained by returning the hydrogen at the low temperature to a normal temperature and then passing this hydrogen through equipment for accelerating a conversion from parahydrogen to orthohydrogen.
Abstract:
A method of manufacturing an optical fiber base material includes: forming a porous glass base material by depositing glass particles; providing a vessel which employs a composite tube, the composite tube including a portion formed by jacketing a first quartz glass containing aluminum equal to or less than 0.01 ppm with a second quartz glass containing aluminum equal to or more than 15 ppm; introducing dehydration reaction gas and inert gas into the vessel; heating the jacketed portion in the vessel which contains the dehydration reaction gas and the inert gas; and inserting the porous glass base material into the heated vessel to dehydrate and sinter the porous glass base material.
Abstract:
When transmitting serial data from a master device to a slave device, it is possible to promptly detect a communication error if any occurs. Serial data transmitted from the master device to the slave device has two or more continuous bytes of dummy data having an identical structure. When the slave device recognizes the dummy data, communication error processing is executed. Assume that the serial data is shifted by an affect of a noise. In this case, “a text end control code (ETX)” is also shifted and the serial data cannot be recognized and no data reception end process is executed. However, during a period after this, a part of the first dummy data and a part of the second dummy data are received and one dummy data is recognized. Thus, the slave device can promptly execute the communication error processing.
Abstract:
There are provided a sintering method and a sintering apparatus of a porous glass base material for sintering a porous glass base material to be dehydrated and vitrified into a transparent glass without causing core displacement and cross-sectional shape deformation. In detail, an aspect of the present invention is a sintering method of a porous glass base material for sintering a rod-like porous glass base material by hanging and moving the rod-like porous glass base material though a heating furnace. Here, the porous glass base material is lowered into a heating furnace heated to a sintering temperature, and after every part of the porous glass base material is moved through a preheated region extending from an upper edge of an insulating member to an upper edge of a heater in a heating furnace body in 4.5 hours or longer, the porous glass base material is sintered by the heater to be vitrified into a transparent glass.
Abstract:
A wireless sensor system according to the invention has a wireless sensor device for detecting opening and closing of a door or a window, and a wireless base station for exchanging data with the wireless sensor device 2 by wireless. A detected direction setting portion for setting a direction where an acceleration is detected and a sensitivity level setting portion for setting a sensitivity level of the wireless sensor device are located on the wireless base station side so as to set the detected direction and the sensitivity level on the wireless base station side. Then, it is not necessary to set both on the wireless sensor device, and the setting is simple, thereby.
Abstract:
A wireless sensor system according to the invention has a wireless sensor device for detecting something and a wireless base station for exchanging data with the wireless sensor device by wireless. The wireless sensor device 2 has a sampling signal transmitting portion for transmitting a sampling signal, and the wireless base station has a sensitivity detecting portion for detecting a receive sensitivity of the sampling signal, and a sensitivity transmitting portion for transmitting a result detected thereby to the wireless sensor device. And, the wireless sensor device has at least one of a LED and a buzzer for informing of the receive sensitivity on the basis of data from the sensitivity transmitting portion. A worker who tries to locate the wireless sensor device can easily know the best place for location with the LED or the like.