Abstract:
An optical navigation device for use with mobile telephones and the like is disclosed, which has a reduced height as compared with current designs. The navigation device comprises a laser such as a VCSEL laser, an exposed user surface and two other surfaces that provide for total internal reflection of the incident laser beam. The surfaces are constructed with shallower than normal angles, preserving the basic functionality of the device while reducing the height.
Abstract:
An optical navigation device for use with mobile telephones and the like is disclosed, which has a reduced height as compared with current designs. The navigation device comprises a laser such as a VCSEL laser, an exposed user surface and two other surfaces that provide for total internal reflection of the incident laser beam. The surfaces are constructed with shallower than normal angles, preserving the basic functionality of the device while reducing the height.
Abstract:
A proximity sensor includes a sensor package having an attachment pad with a radiation source and a radiation detector housed within the sensor package. The source and the detector are held in a fixed relation to the attachment pad, and are mounted by one of a direct or indirect attachment to the attachment pad. A portion of the attachment pad is adapted to form a baffle which forms at least part of an optical isolator. The optical isolator is adapted to substantially prevent the internal propagation of radiation between the source and the detector within the sensor package.
Abstract:
A proximity sensor includes a sensor package having an attachment pad with a radiation source and a radiation detector housed within the sensor package. The source and the detector are held in a fixed relation to the attachment pad, and are mounted by one of a direct or indirect attachment to the attachment pad. A portion of the attachment pad is adapted to form a baffle which forms at least part of an optical isolator. The optical isolator is adapted to substantially prevent the internal propagation of radiation between the source and the detector within the sensor package.
Abstract:
The internal propagation of radiation between a radiation source and radiation detector mounted within a sensor package is prevented by the use of an optical isolator. The optical isolator is formed by the combination of a baffle mounted between the source and detector and a groove formed in an upper surface of the sensor package between the source and detector. A bottom of the groove is positioned adjacent to an upper edge of the baffle.
Abstract:
The internal propagation of radiation between a radiation source and radiation detector mounted within a sensor package is prevented by the use of an optical isolator. The optical isolator is formed by the combination of a baffle mounted between the source and detector and a groove formed in an upper surface of the sensor package between the source and detector. A bottom of the groove is positioned adjacent to an upper edge of the baffle.
Abstract:
A radiation sensor is provided comprising: one or more first pixels and one or more second pixels. A first optical element is provided over the first and second pixels, having a first field of view. A second optical element is provided over the one or more second pixels, having a second field of view. The second optical element is positioned between the first optical element and the one or more second pixels, wherein the first field of view is substantially narrower than, and lies substantially within, the second field of view.
Abstract:
An imaging assembly for an image sensor may include a lens, a transparent substrate and two aspherical optical coatings on each side of the substrate. The imaging assembly can also incorporate an opaque coating with an opening in-line with the lens to form an aperture, an anti-reflection coating, and an infrared filter coating.
Abstract:
An optical mouse includes a base and a lens for forming an image on an image sensor package. An LED projects light into the field of view of the lens via a prism. The prism enables the LED to be set horizontally, which reduces optical losses. The prism and lens may form part of a single molding.
Abstract:
An optical mouse includes a base and a lens for forming an image on an image sensor package. An LED projects light into the field of view of the lens via a prism. The prism enables the LED to be set horizontally, which reduces optical losses. The prism and lens may form part of a single molding.