Abstract:
A method is provided in one example embodiment and may include determining that a periodic timer for a user equipment (UE) is about to expire; communicating to an application service, prior to expiration of the periodic timer for the UE, an indication associated with an availability of the UE to receive data from the application service; and communicating the data from the application service to the UE upon receiving the indication. In some cases, the method can include registering, by the application service, to receive the indication from a Mobility Management Entity (MME) or a serving General Packet Radio Service (GPRS) support node (SGSN), wherein the registering is performed via a service capability exposure function (SCEF) in communication with the MME or the SGSN and the application service.
Abstract:
A method is provided in one example embodiment and may include determining that a periodic timer for a user equipment (UE) is about to expire; communicating to an application service, prior to expiration of the periodic timer for the UE, an indication associated with an availability of the UE to receive data from the application service; and communicating the data from the application service to the UE upon receiving the indication. In some cases, the method can include registering, by the application service, to receive the indication from a Mobility Management Entity (MME) or a serving General Packet Radio Service (GPRS) support node (SGSN), wherein the registering is performed via a service capability exposure function (SCEF) in communication with the MME or the SGSN and the application service.
Abstract:
A method is provided in one example embodiment and may include determining that a periodic timer for a user equipment (UE) is about to expire; communicating to an application service, prior to expiration of the periodic timer for the UE, an indication associated with an availability of the UE to receive data from the application service; and communicating the data from the application service to the UE upon receiving the indication. In some cases, the method can include registering, by the application service, to receive the indication from a Mobility Management Entity (MME) or a serving General Packet Radio Service (GPRS) support node (SGSN), wherein the registering is performed via a service capability exposure function (SCEF) in communication with the MME or the SGSN and the application service.
Abstract:
Data to be transmitted to a user device may be received at a network device. It may be determined that the user device has network connectivity to the network device via a wide area wireless network connection and that the user device also separately has connectivity to the network device via a local area wireless network connection to an access point. The data may be split so that some portion of the data is to be transmitted by the wide area wireless network connection and another portion of the data is to be transmitted by the local area wireless network connection.
Abstract:
A method is provided in one example embodiment and may include negotiating power domain interference coordination (PDIC) parameters between a macro cell radio and at least one small cell radio; determining successive interference cancellation (SIC) parameters for each of one or more user equipment (UE) that are to perform SIC for one or more transmissions; and sending the SIC parameters to each of the one or more user equipment. Negotiating PDIC parameters can include determining, by the macro cell radio and at least one small cell radio, one or more physical resource blocks (PRBs) for which transmission power levels can be coordinated for a plurality of frequencies in a frequency domain and a plurality of subframes in a time domain and exchanging PDIC parameters between the cell radios in order to perform PDIC transmissions for UE served by the cell radios.
Abstract:
An example method is provided in one example embodiment and may include configuring paging parameters for a group of one or more user equipment (UE) based, at least in part, on a group identifier (ID) for the group of one or more UE; communicating the paging parameters to each of the one or more UE of the group; and paging one or more idle mode UE of the group according to the paging parameters to transition the idle mode UE to a connected mode for receiving a group message. In some instances, configuring the paging parameters can include configuring a paging frame and paging occasion for the group of one or more UE based on the group ID; configuring extended paging cycle radio frames for the group of one or more UE; and/or configuring a paging group Radio Network Temporary Identifier for the group of one or more UE.
Abstract:
Systems and methods for providing host-neutral small cells include communicating with a first User Equipment (UE) at a small cell. The first UE communicates with the small cell via a first Evolved Node B (eNodeB) base station associated with a first Evolved Packet Core (EPC). The small cell further communicates with a second UE. The second UE communicates with the small cell via a second eNodeB base station associated with a second EPC. Although a different wireless carrier may be associated with each of the first and second UEs, they may both communicate with the host-neutral small cell.
Abstract:
A method is provided in one example embodiment and may include determining that a periodic timer for a user equipment (UE) is about to expire; communicating to an application service, prior to expiration of the periodic timer for the UE, an indication associated with an availability of the UE to receive data from the application service; and communicating the data from the application service to the UE upon receiving the indication. In some cases, the method can include registering, by the application service, to receive the indication from a Mobility Management Entity (MME) or a serving General Packet Radio Service (GPRS) support node (SGSN), wherein the registering is performed via a service capability exposure function (SCEF) in communication with the MME or the SGSN and the application service.
Abstract:
An example method is provided in one example embodiment and may include configuring paging parameters for a group of one or more user equipment (UE) based, at least in part, on a group identifier (ID) for the group of one or more UE; communicating the paging parameters to each of the one or more UE of the group; and paging one or more idle mode UE of the group according to the paging parameters to transition the idle mode UE to a connected mode for receiving a group message. In some instances, configuring the paging parameters can include configuring a paging frame and paging occasion for the group of one or more UE based on the group ID; configuring extended paging cycle radio frames for the group of one or more UE; and/or configuring a paging group Radio Network Temporary Identifier for the group of one or more UE.
Abstract:
Data to be transmitted to a user device may be received at a network device. It may be determined that the user device has network connectivity to the network device via a wide area wireless network connection and that the user device also separately has connectivity to the network device via a local area wireless network connection to an access point. The data may be split so that some portion of the data is to be transmitted by the wide area wireless network connection and another portion of the data is to be transmitted by the local area wireless network connection.