Abstract:
Techniques for handling requests from a remote device are disclosed. A server receives a first unsolicited activation request from a first device of a plurality of devices. A probabilistic hash filter, associated with a data set, is queried using a first identifier associated with the first device. In response, a first result is received from the probabilistic hash filter indicating that the first device is not ready for activation. In response to receiving the first result, a back-off indication is transmitted to the first device.
Abstract:
An example method is provided in one example embodiment and includes receiving, by a first Home eNodeB (HeNB), a first attach request from a user equipment (UE) for attaching a subscriber associated with the UE to a small cell network; determining whether the subscriber has transitioned into the small cell network from a macro cell network; exchanging, based on the determination, a first pair of messages between the first HeNB and the UE to determine an International Mobile Subscriber Identity (IMSI) of the subscriber; and exchanging, based on the determination, one or more second pairs of messages between the first HeNB and the UE to advance a sequence number for Non-Access Stratum (NAS) messages for the UE to a value corresponding to a received sequence number for the first attach request from the UE.
Abstract:
An example method is provided in one example embodiment and may include determining a presence of user equipment (UE) in relation to small cell radio(s) of a small cell network based on information obtained through the small cell network and one or more parallel networks; and adjusting transmit power for the small cell radio(s) based on the presence of UE in relation to the small cell radio(s). Another example method can include determining that a UE in cell paging channel mode has changed its selected macro cell radio; determining that the UE is allowed service on a small cell radio located in a vicinity of a macro cell coverage area of a selected macro cell radio; and adjusting a transmit power of the small cell radio based on a presence of the UE in a surrounding macro cell coverage area of the small cell radio.
Abstract:
An example method is provided in one example embodiment and includes receiving, by a first Home eNodeB (HeNB), a first attach request from a user equipment (UE) for attaching a subscriber associated with the UE to a small cell network; determining whether the subscriber has transitioned into the small cell network from a macro cell network; exchanging, based on the determination, a first pair of messages between the first HeNB and the UE to determine an International Mobile Subscriber Identity (IMSI) of the subscriber; and exchanging, based on the determination, one or more second pairs of messages between the first HeNB and the UE to advance a sequence number for Non-Access Stratum (NAS) messages for the UE to a value corresponding to a received sequence number for the first attach request from the UE.
Abstract:
An example method is provided in one example embodiment and may include determining whether at least one user equipment (UE) is present within a combined WiFi coverage area that overlaps a small cell coverage area of a multimode access point (AP), wherein the multimode AP comprises a WiFi AP portion and a small cell AP portion; and controlling a power saving mode for the small cell AP portion of the multimode AP based on whether at least one UE is determined to be present within the combined WiFi coverage area that overlaps the small cell coverage area of the multimode AP.
Abstract:
An example method is provided in one example embodiment and may include determining a presence of user equipment (UE) in relation to small cell radio(s) of a small cell network based on information obtained through the small cell network and one or more parallel networks; and adjusting transmit power for the small cell radio(s) based on the presence of UE in relation to the small cell radio(s). Another example method can include determining that a UE in cell paging channel mode has changed its selected macro cell radio; determining that the UE is allowed service on a small cell radio located in a vicinity of a macro cell coverage area of a selected macro cell radio; and adjusting a transmit power of the small cell radio based on a presence of the UE in a surrounding macro cell coverage area of the small cell radio.
Abstract:
A method is provided in one example embodiment and includes querying by a first communications network a database maintained by a second communications network for location data comprising a path typically taken by a mobile device; using the location data to identify network elements of the first communications network located proximate the path; and sending a page request for the mobile device only to the identified network elements. The method may further include mapping a first identifier for the mobile device to the second identifier for the mobile device; and using the second identifier to perform the querying. In certain embodiments, the mapping is initiated responsive to a call received for the mobile device.
Abstract:
The present disclosure provides improved determinism in systems and methods for wireless communications via real-time visual object tracking using radio, video, and range finding. In one example, a first and a second Access Point (AP) in a constellation in which the APs are positioned at knowns position in the environment, and the APs perform image processing to identify an entity the environment based on captured images and an entity definition. The APs receive, via range finders, ranges between the entity and the first and second APs to determine a location of the entity in the environment. The APs may then create a profile for the entity that includes an entity identifier, the location of the entity, and indicates whether one of the first AP and the second AP is in wireless communication with the entity.
Abstract:
An example method is provided in one example embodiment and may include determining one or more outlier access points (APs) of a plurality of APs managed by a same service provider, wherein the determining is performed based on performance metrics calculated for each of the plurality of APs and wherein each outlier AP has a performance metric that fails to satisfy a performance metric threshold; identifying a Radio Frequency (RF) cluster to which each outlier AP belongs, wherein each outlier AP belongs to only one RF cluster; applying one or more optimization parameters to one or more APs for one or more RF clusters; and calculating new performance metrics for the plurality of APs to determine whether any of the plurality of APs fail to satisfy the performance metric threshold after the one or more optimization parameters are applied.
Abstract:
In an example, a wireless communication system and apparatuses thereof are described. In an example long-term evolution (LTE) network, a first base station hands over a connection to a second base station. The first base station may be a (femto) home eNodeB (HeNB) or (macro) eNodeB. The second base station may also be a HeNB or eNodeB connected to a different gateway. The first base station may send “Handover Request” on an X2 connection, identifying the gateway that the second base station is connected to as the correct gateway. After sending a “Handover Request Acknowledgement,” the second base station correctly establishes a tunnel to a connected gateway device.