Abstract:
In an example, a wireless communication system and apparatuses thereof are described. In an example long-term evolution (LTE) network, a first base station hands over a connection to a second base station. The first base station may be a (femto) home eNodeB (HeNB) or (macro) eNodeB. The second base station may also be a HeNB or eNodeB connected to a different gateway. The first base station may send “Handover Request” on an X2 connection, identifying the gateway that the second base station is connected to as the correct gateway. After sending a “Handover Request Acknowledgement,” the second base station correctly establishes a tunnel to a connected gateway device.
Abstract:
An example method for facilitating almost blank sub-frame (ABS) based orthogonal resource allocation in a wireless network environment is provided and includes receiving at a serving Evolved Universal Terrestrial Radio Access Network (E-UTRAN) nodeB (eNB), ABS patterns from a plurality of neighboring eNBs in a orthogonal frequency-division multiplexing based network, each neighboring eNB transmitting a separate ABS pattern, setting a maximum duty cycle of physical downlink control channel in a frame to be transmitted by the serving eNB within its serving cell, and computing an optimal ABS pattern at the serving eNB subject to the maximum duty cycle and based on the ABS patterns received from the plurality of neighboring eNBs. In specific embodiments, computing the optimal ABS pattern includes identifying neighboring eNBs transmitting at each sub-frame of the frame, identifying sub-frames transmitted by a least number of neighboring eNBs, and selecting each identified sub-frame for configuring as an ABS.
Abstract:
An example method for facilitating almost blank sub-frame (ABS) based orthogonal resource allocation in a wireless network environment is provided and includes receiving at a serving Evolved Universal Terrestrial Radio Access Network (E-UTRAN) nodeB (eNB), ABS patterns from a plurality of neighboring eNBs in a orthogonal frequency-division multiplexing based network, each neighboring eNB transmitting a separate ABS pattern, setting a maximum duty cycle of physical downlink control channel in a frame to be transmitted by the serving eNB within its serving cell, and computing an optimal ABS pattern at the serving eNB subject to the maximum duty cycle and based on the ABS patterns received from the plurality of neighboring eNBs. In specific embodiments, computing the optimal ABS pattern includes identifying neighboring eNBs transmitting at each sub-frame of the frame, identifying sub-frames transmitted by a least number of neighboring eNBs, and selecting each identified sub-frame for configuring as an ABS.
Abstract:
An example method for facilitating almost blank sub-frame (ABS) based orthogonal resource allocation in a wireless network environment is provided and includes receiving at a serving Evolved Universal Terrestrial Radio Access Network (E-UTRAN) nodeB (eNB), ABS patterns from a plurality of neighboring eNBs in a orthogonal frequency-division multiplexing based network, each neighboring eNB transmitting a separate ABS pattern, setting a maximum duty cycle of physical downlink control channel in a frame to be transmitted by the serving eNB within its serving cell, and computing an optimal ABS pattern at the serving eNB subject to the maximum duty cycle and based on the ABS patterns received from the plurality of neighboring eNBs. In specific embodiments, computing the optimal ABS pattern includes identifying neighboring eNBs transmitting at each sub-frame of the frame, identifying sub-frames transmitted by a least number of neighboring eNBs, and selecting each identified sub-frame for configuring as an ABS.
Abstract:
In an example, a wireless communication system and apparatuses thereof are described. In an example long-term evolution (LTE) network, a first base station hands over a connection to a second base station. The first base station may be a (femto) home eNodeB (HeNB) or (macro) eNodeB. The second base station may also be a HeNB or eNodeB connected to a different gateway. The first base station may send “Handover Request” on an X2 connection, identifying the gateway that the second base station is connected to as the correct gateway. After sending a “Handover Request Acknowledgement,” the second base station correctly establishes a tunnel to a connected gateway device.
Abstract:
An example method for facilitating almost blank sub-frame (ABS) based orthogonal resource allocation in a wireless network environment is provided and includes receiving at a serving Evolved Universal Terrestrial Radio Access Network (E-UTRAN) nodeB (eNB), ABS patterns from a plurality of neighboring eNBs in a orthogonal frequency-division multiplexing based network, each neighboring eNB transmitting a separate ABS pattern, setting a maximum duty cycle of physical downlink control channel in a frame to be transmitted by the serving eNB within its serving cell, and computing an optimal ABS pattern at the serving eNB subject to the maximum duty cycle and based on the ABS patterns received from the plurality of neighboring eNBs. In specific embodiments, computing the optimal ABS pattern includes identifying neighboring eNBs transmitting at each sub-frame of the frame, identifying sub-frames transmitted by a least number of neighboring eNBs, and selecting each identified sub-frame for configuring as an ABS.
Abstract:
An example method for facilitating almost blank sub-frame (ABS) based orthogonal resource allocation in a wireless network environment is provided and includes receiving at a serving Evolved Universal Terrestrial Radio Access Network (E-UTRAN) nodeB (eNB), ABS patterns from a plurality of neighboring eNBs in a orthogonal frequency-division multiplexing based network, each neighboring eNB transmitting a separate ABS pattern, setting a maximum duty cycle of physical downlink control channel in a frame to be transmitted by the serving eNB within its serving cell, and computing an optimal ABS pattern at the serving eNB subject to the maximum duty cycle and based on the ABS patterns received from the plurality of neighboring eNBs. In specific embodiments, computing the optimal ABS pattern includes identifying neighboring eNBs transmitting at each sub-frame of the frame, identifying sub-frames transmitted by a least number of neighboring eNBs, and selecting each identified sub-frame for configuring as an ABS.
Abstract:
In an example, a wireless communication system and apparatuses thereof are described. In an example long-term evolution (LTE) network, a first base station hands over a connection to a second base station. The first base station may be a (femto) home eNodeB (HeNB) or (macro) eNodeB. The second base station may also be a HeNB or eNodeB connected to a different gateway. The first base station may send “Handover Request” on an X2 connection, identifying the gateway that the second base station is connected to as the correct gateway. After sending a “Handover Request Acknowledgement,” the second base station correctly establishes a tunnel to a connected gateway device.
Abstract:
An example method for facilitating almost blank sub-frame (ABS) based orthogonal resource allocation in a wireless network environment is provided and includes receiving at a serving Evolved Universal Terrestrial Radio Access Network (E-UTRAN) nodeB (eNB), ABS patterns from a plurality of neighboring eNBs in a orthogonal frequency-division multiplexing based network, each neighboring eNB transmitting a separate ABS pattern, setting a maximum duty cycle of physical downlink control channel in a frame to be transmitted by the serving eNB within its serving cell, and computing an optimal ABS pattern at the serving eNB subject to the maximum duty cycle and based on the ABS patterns received from the plurality of neighboring eNBs. In specific embodiments, computing the optimal ABS pattern includes identifying neighboring eNBs transmitting at each sub-frame of the frame, identifying sub-frames transmitted by a least number of neighboring eNBs, and selecting each identified sub-frame for configuring as an ABS.