Abstract:
An example method for facilitating almost blank sub-frame (ABS) based orthogonal resource allocation in a wireless network environment is provided and includes receiving at a serving Evolved Universal Terrestrial Radio Access Network (E-UTRAN) nodeB (eNB), ABS patterns from a plurality of neighboring eNBs in a orthogonal frequency-division multiplexing based network, each neighboring eNB transmitting a separate ABS pattern, setting a maximum duty cycle of physical downlink control channel in a frame to be transmitted by the serving eNB within its serving cell, and computing an optimal ABS pattern at the serving eNB subject to the maximum duty cycle and based on the ABS patterns received from the plurality of neighboring eNBs. In specific embodiments, computing the optimal ABS pattern includes identifying neighboring eNBs transmitting at each sub-frame of the frame, identifying sub-frames transmitted by a least number of neighboring eNBs, and selecting each identified sub-frame for configuring as an ABS.
Abstract:
An example method for facilitating almost blank sub-frame (ABS) based orthogonal resource allocation in a wireless network environment is provided and includes receiving at a serving Evolved Universal Terrestrial Radio Access Network (E-UTRAN) nodeB (eNB), ABS patterns from a plurality of neighboring eNBs in a orthogonal frequency-division multiplexing based network, each neighboring eNB transmitting a separate ABS pattern, setting a maximum duty cycle of physical downlink control channel in a frame to be transmitted by the serving eNB within its serving cell, and computing an optimal ABS pattern at the serving eNB subject to the maximum duty cycle and based on the ABS patterns received from the plurality of neighboring eNBs. In specific embodiments, computing the optimal ABS pattern includes identifying neighboring eNBs transmitting at each sub-frame of the frame, identifying sub-frames transmitted by a least number of neighboring eNBs, and selecting each identified sub-frame for configuring as an ABS.
Abstract:
An example method for facilitating almost blank sub-frame (ABS) based orthogonal resource allocation in a wireless network environment is provided and includes receiving at a serving Evolved Universal Terrestrial Radio Access Network (E-UTRAN) nodeB (eNB), ABS patterns from a plurality of neighboring eNBs in a orthogonal frequency-division multiplexing based network, each neighboring eNB transmitting a separate ABS pattern, setting a maximum duty cycle of physical downlink control channel in a frame to be transmitted by the serving eNB within its serving cell, and computing an optimal ABS pattern at the serving eNB subject to the maximum duty cycle and based on the ABS patterns received from the plurality of neighboring eNBs. In specific embodiments, computing the optimal ABS pattern includes identifying neighboring eNBs transmitting at each sub-frame of the frame, identifying sub-frames transmitted by a least number of neighboring eNBs, and selecting each identified sub-frame for configuring as an ABS.
Abstract:
An example method for facilitating almost blank sub-frame (ABS) based orthogonal resource allocation in a wireless network environment is provided and includes receiving at a serving Evolved Universal Terrestrial Radio Access Network (E-UTRAN) nodeB (eNB), ABS patterns from a plurality of neighboring eNBs in a orthogonal frequency-division multiplexing based network, each neighboring eNB transmitting a separate ABS pattern, setting a maximum duty cycle of physical downlink control channel in a frame to be transmitted by the serving eNB within its serving cell, and computing an optimal ABS pattern at the serving eNB subject to the maximum duty cycle and based on the ABS patterns received from the plurality of neighboring eNBs. In specific embodiments, computing the optimal ABS pattern includes identifying neighboring eNBs transmitting at each sub-frame of the frame, identifying sub-frames transmitted by a least number of neighboring eNBs, and selecting each identified sub-frame for configuring as an ABS.
Abstract:
An example method for facilitating almost blank sub-frame (ABS) based orthogonal resource allocation in a wireless network environment is provided and includes receiving at a serving Evolved Universal Terrestrial Radio Access Network (E-UTRAN) nodeB (eNB), ABS patterns from a plurality of neighboring eNBs in a orthogonal frequency-division multiplexing based network, each neighboring eNB transmitting a separate ABS pattern, setting a maximum duty cycle of physical downlink control channel in a frame to be transmitted by the serving eNB within its serving cell, and computing an optimal ABS pattern at the serving eNB subject to the maximum duty cycle and based on the ABS patterns received from the plurality of neighboring eNBs. In specific embodiments, computing the optimal ABS pattern includes identifying neighboring eNBs transmitting at each sub-frame of the frame, identifying sub-frames transmitted by a least number of neighboring eNBs, and selecting each identified sub-frame for configuring as an ABS.
Abstract:
An example method for facilitating almost blank sub-frame (ABS) based orthogonal resource allocation in a wireless network environment is provided and includes receiving at a serving Evolved Universal Terrestrial Radio Access Network (E-UTRAN) nodeB (eNB), ABS patterns from a plurality of neighboring eNBs in a orthogonal frequency-division multiplexing based network, each neighboring eNB transmitting a separate ABS pattern, setting a maximum duty cycle of physical downlink control channel in a frame to be transmitted by the serving eNB within its serving cell, and computing an optimal ABS pattern at the serving eNB subject to the maximum duty cycle and based on the ABS patterns received from the plurality of neighboring eNBs. In specific embodiments, computing the optimal ABS pattern includes identifying neighboring eNBs transmitting at each sub-frame of the frame, identifying sub-frames transmitted by a least number of neighboring eNBs, and selecting each identified sub-frame for configuring as an ABS.