Abstract:
The present disclosure describes an apparatus that generates headers for backscattering devices. The apparatus includes one or more memories and one or more processors communicatively coupled to the one or more memories. A combination of the one or more processors determined an Internet protocol (IP) address for a backscattering device, generates a header that includes the IP address, and communicates a first energizing frame to the backscattering device. The first energizing frame includes the header. The combination of the one or more processors also receives a message from the backscattering device. The message includes the header.
Abstract:
In one embodiment, an access point of an overhead mesh of access points in an area selects a range of client identifiers. The access point sends, via a beam cone transmitted in a substantially downward direction towards a floor of the area, a trigger signal that includes the range of client identifiers and prompts client devices having identifiers in that range to send best effort transmissions towards the overhead mesh. The access point detects a collision between the best effort transmissions of the client devices. The access point adjusts the range of client identifiers so as to avoid future collisions between the best effort transmissions of the client devices.
Abstract:
Techniques for managing communications between access points (APs) and stations (STAs) are described herein. In one embodiment, an AP broadcasts a trigger message to a plurality of STAs, the trigger message including a matrix defining a plurality of resource units (RUs) that the plurality of STAs are assigned to transmit or receive data, and a fragment flag. The presence of the fragment flag, within the scheduling matrix, informs the AP that the data transmission that the fragment flag is appended to is a partial transmission that will be completed in a subsequent transmission opportunity.
Abstract:
A method includes receiving, at a home controller of a home domain and from a first device in the home domain, a first message concerning a user device that is anchored to the home domain and that has roamed from the home domain to a visitor domain. The method also includes, in response to determining that the first device is a router, opening a tunnel between the home controller and a visitor controller of the visitor domain and communicating the first message to the user device through the tunnel. The method further includes receiving, at the home controller and from a second device in the home domain, a second message concerning the user device and in response to determining that the second device is not a router, communicating, to the second device, a proxy response to the second message.
Abstract:
Protocol independent signal slotting and scheduling is provided by receiving a frame including a header and a payload for transmission; in response to determining that the frame matches a rule identifying the frame as part of a control loop, compressing the header according to the rule to produce a compressed packet of a predefined size that includes the compressed header and the payload; scheduling transmission of the compressed packet; and transmitting the compressed packet to a receiving device. In some embodiments, before compressing the frame, in response to determining that a size of the payload does not match a predefined size threshold: the payload is fragmented into a plurality of portions, wherein each portion satisfies the predefined size threshold, or the compressed packet is padded to the predefined size threshold via forward error correction padding information.
Abstract:
A wireless device can achieve higher predictability for its transmissions by inserting a placeholder frame in a transmission queue before time sensitive data has been received. In addition, a contention countdown associated with the placeholder frame can start before the time sensitive data is ready for transmission. Once the data is available, the device can insert the data into the payload of the placeholder frame, thereby reducing the wait time before the data can be transmitted wirelessly. Additionally, the device can improve reliability by transmitting data using multiple subcarrier RUs in a channel. The data blocks and the duplicative data can be transmitted in parallel using the subcarrier RUs. If a subset of the subcarrier RUs are blocked because of narrowband interference, the receiving device can nonetheless recover the data blocks and reconstruct the packet from the data transported on the RUs that did not have interference.
Abstract:
In one embodiment, a method comprises: receiving, by a parent network device in a directed acyclic graph (DAG) network topology, a data packet destined toward a DAG root and having been output by a target device in the network topology; identifying, by the parent network device based on the received data packet, an identifiable condition for caching a downward path enabling the parent network device to reach the target device independent of any route table entry in the parent network device; and caching, in the parent network device, the downward path enabling the parent network device to reach the target device independent of any route table entry in the parent network device.
Abstract:
In one embodiment, a method comprises identifying an age of payload data in a data packet by a wireless network node configured for transmitting the data packet to a multi-hop destination via a wireless mesh network; determining by the wireless network node a schedule for the data packet reaching the multi-hop destination; and the wireless network node prioritizing queuing of the data packet for Collision Sense with Multiple Access and Collision Avoidance (CSMA-CA) based wireless transmission in the wireless mesh network based on the corresponding age, relative to the schedule and respective ages of other data packets awaiting transmission by the wireless network node to the destination, where a higher-aged data packet relative to the schedule is granted have a higher priority than a lower-aged data packet relative to the schedule.
Abstract:
In one embodiment, a method is disclosed comprising monitoring dynamic locations of a plurality of mobile communication devices within a physical area covered by a wireless communication network, wherein keys are distributed to the mobile communication devices at association time; determining that a particular mobile communication device should have a relay for communication with the network based on a first location of the particular mobile communication device and inadequate wireless communication characteristics at the first location; selecting an opportunistic relay device from the mobile communication devices based on a second location of the opportunistic relay device and adequate wireless communication characteristics of the opportunistic relay device within the network and to the first location from the second location; and directing the opportunistic relay device to relay communications for the particular mobile communication device at the first location, wherein the communications are encrypted based on the keys.
Abstract:
Techniques for wireless communication are disclosed. These techniques include defining a message schedule for fine time measurement (FTM) at a first wireless access point (AP). The techniques further include broadcasting the message schedule to a plurality of wireless stations (STAs) from the first AP. The techniques further include receiving, at the first AP, a plurality of FTM messages from the plurality of STAs, the messages transmitted by the plurality of STAs based on the message schedule. The techniques further include determining a distance between the first AP and each of the plurality of STAs based on the plurality of FTM messages.