Abstract:
An intelligent hunting device, a voltage signal application system, and an energy management module thereof are disclosed. The intelligent hunting device is used to transfer a signal to an application device. The intelligent hunting device includes a power generation module, a battery module and an energy management module. The power generation module generates a first voltage signal. The battery module generates a second voltage signal. The energy management module is electrically connected to the power generation module and the battery module for enabling the first voltage signal output from the power generation module to be used as a power signal to provide the application device, or enabling the first voltage signal output from the power generation module and the second voltage signal output from the battery module collectively serves as the power signal to provide the application device.
Abstract:
A piezoelectric system for ultrasonic thermotherapy and electrotherapy comprises a first piezoelectric element, a proof mass, a second piezoelectric element and an output unit. The proof mass is disposed between the first piezoelectric element and the second piezoelectric element. The first piezoelectric element is powered by a power source to generate oscillation, which is transferred by the proof mass to the second piezoelectric element so as to cause the second piezoelectric element to move and generate power. The output unit comprises a connecting surface and a tip surface. The output unit is electronically connected with the second piezoelectric element, wherein the connecting surface is connected with the first piezoelectric element and the tip surface is formed in a tapered shape. The oscillation from the first piezoelectric element and the power generated by the second piezoelectric element are output through the tip surface.
Abstract:
An interface apparatus of transmission which can be installed in an ultrasonic vibration machining apparatus which includes a cutting tool and a piezoelectric vibration apparatus includes a fixed ring, a plurality of rotary bearing objects and a rotary ring. The fixed ring is used to connect the piezoelectric vibration apparatus and remains in a fixed state. The rotary ring is used to connect the cutting tool for machining. The plurality of rotary bearing objects are between the fixed ring and the rotary ring.
Abstract:
A micro blower includes a base metal sheet, a flowing channel layer, a sandwich metal sheet, a capping layer and two first piezoelectric vibrators. The flowing channel layer is connected to the top of the base metal sheet and includes a first chamber, a second chamber, an inlet channel, a linking channel and an outlet channel. The inlet channel links to the first chamber and includes an inlet channel inlet size and an inlet channel outlet size, and the inlet channel inlet size is smaller than the inlet channel outlet size. The linking channel links to the first chamber and the second chamber and includes a linking channel inlet size and a linking channel outlet size, and the linking channel inlet size is smaller than the linking channel outlet size.
Abstract:
A piezoelectric sensing module, a piezoelectric sensing module detecting method, and a piezoelectric sensing detection system thereof are disclosed. The piezoelectric sensing module is used for an operating tool. The piezoelectric sensing module includes a piezoelectric sensing film, and the piezoelectric sensing film includes at least a first to a sixth electrodes: wherein the first electrode is disposed between the third and the fourth electrodes, the second electrode is disposed between the fifth and the sixth electrodes; wherein the first and the second electrodes, the third and the fifth electrodes, and the fourth and the sixth electrodes are separated by a certain distance respectively, and a first angle between the first and the second electrodes, a second angle between the third and the fifth electrodes, and a third angle between the fourth and the sixth electrodes each have an included angle of 90 degrees.
Abstract:
A triple-axial force measurement sensor is disclosed in the invention. The triple-axial force measurement sensor includes a first sensing unit and a second sensing unit. The first sensing unit includes a first electrode, a plurality of second electrodes and a plurality of third electrodes. The first electrode includes an electrode main body, a plurality of first extension columns, a plurality of second extension columns, a plurality of first electrode columns and a plurality of second electrode columns. The first extension columns and the second extension columns are connected to the electrode main body. The first electrode columns are connected to the first extension columns. The second electrode columns are connected to the second extension columns.
Abstract:
A multi-axis piezoelectric stress-sensing device, a multi-axis piezoelectric stress-sensing device polarization method, and a piezoelectric sensing detection system thereof are disclosed. The piezoelectric sensing detection system is used for a machining tool. The multi-axis piezoelectric stress-sensing device includes a piezoelectric sensing film, a first electrode, a second electrode, a third electrode, and a fourth electrode. The piezoelectric sensing film has four corners. The first electrode, the second electrode, the third electrode and the fourth electrode are located at the four corners of the piezoelectric sensing film, and at least one electrode is used to polarize another electrode according to at least one polarization direction.
Abstract:
A linear piezoelectric motor and a slider drive system thereof are disclosed. The linear piezoelectric motor includes a piezoelectric ceramic element and a base structure. The piezoelectric ceramic element includes a first region, a second region and an interval region located between the first and the second region, wherein the first and the second region may be formed by a first and a second power signal supplied by a power supply to form a first and a second standing wave, respectively. The interval region is a quarter wavelengths. The first and the second standing wave have a phase difference so as to form a traveling wave. The base structure disposes the piezoelectric ceramic element and has a pectinate structure to increase the amplitude of the first and the second standing wave, thereby enabling the piezoelectric motor to be driven.
Abstract:
A single hybrid motor of the present invention has a rotor, a first stator, a first torsional vibrator, a first longitudinal vibrator, a first template, and a first connecting element. One end of the first connecting element is connected with the rotor, the first torsional vibrator, the first longitudinal vibrator, the first template, the first elastic block and the second elastic block. The first elastic block is disposed between the rotor and the first torsional vibrator. The second elastic block is disposed between the first template and the first longitudinal vibrator. Adjusting the length of the first elastic block or/and the second elastic block allows the first torsional vibrator and the first longitudinal vibrator of the single hybrid motor to obtain a plurality of sets of resonance frequencies within a degeneracy range.
Abstract:
A piezoelectric sensing element includes a ring type piezoelectric device, two ceramic structural adhesives, two electrode sheets, two structural adhesives, a ring type sheet, and a disk-shaped cylindrical ceramic sheet. The two ceramic structural adhesives, respectively located above and below the ring type piezoelectric device. The two electrode sheets, respectively located above and below the two ceramic structural adhesives. The two structural adhesives, respectively located above and below the two electrode sheets. The ring type sheet, located above or below one of the two structural adhesives. The disk-shaped cylindrical ceramic sheet, located below or above another of the two structural adhesives.