Abstract:
Apparatuses and methods for scanned beam endoscopes, endoscope tips, and scanned beam imagers are disclosed. In one aspect, a scanned beam endoscope includes at least one light detection element that collects light reflected from a FOV through one or more openings in the scanner of the endoscope. In another aspect, the illumination optical fiber may be positioned so that its output end is laterally positioned in relation to the scanner. In yet another aspect, the scanner is oriented to provide a non-axial FOV.
Abstract:
A portable video projector includes facility to direct a projected image field along an axis in an alignment corresponding to the state of an optical element.
Abstract:
Embodiments including methods and apparatuses for displaying an image including generating a first modulated and scanned excitation beam; generating a second modulated and scanned excitation beam; impinging the first and second modulated and scanned excitation beams onto a photoluminescent screen; and responsively converting the wavelengths of the first and second excitation beams into different corresponding third and fourth visible wavelength photoluminescent emissions, wherein the first modulated and scanned excitation beam is substantially prevented from stimulating photoluminescent emissions at the fourth visible wavelength and the second modulated and scanned excitation beam is substantially prevented from stimulating photoluminescent emissions at the third visible wavelength.
Abstract:
A photoluminescent light source includes an excitation light source operable to emit light at a primary wavelength and a photoluminescent material optically coupled to the excitation light source. The photoluminescent material has a characteristic to emit light at a secondary wavelength in response to absorbing light at the primary wavelength. Scanned beam systems employing photoluminescent light sources and methods of using the photoluminescent light sources are also disclosed.
Abstract:
An endoscope system and method includes an endoscope tip coupled to a endoscope console for providing images of anatomical features imaged using the endoscope system. The system also includes a calibration device having known optical properties. The calibration device is imaged using the endoscope system, and data corresponding to the image is obtained. This data are compared to data corresponding to the known optical properties of the calibration device. Based on this comparison, calibration data corresponding to imaging errors of the endoscope system are obtained. The calibration data are used to calibrate the endoscope system.
Abstract:
A scanning endoscope, amenable to both rigid and flexible forms, scans a beam of light across a field-of-view, collects light scattered from the scanned beam, detects the scattered light, and produces an image. The endoscope may comprise one or more bodies housing a controller, light sources, and detectors; and a separable tip housing the scanning mechanism. The light sources may include laser emitters that combine their outputs into a polychromatic beam. Light may be emitted in ultraviolet or infrared wavelengths to produce a hyperspectral image. The detectors may be housed distally or at a proximal location with gathered light being transmitted thereto via optical fibers. A plurality of scanning elements may be combined to produce a stereoscopic image or other imaging modalities. The endoscope may include a lubricant delivery system to ease passage through body cavities and reduce trauma to the patient. The imaging components are especially compact, being comprised in some embodiments of a MEMS scanner and optical fibers, lending themselves to interstitial placement between other tip features such as working channels, irrigation ports, etc.
Abstract:
The invention relates to a separable device for the application of compression and thermal therapy to a patient. A first section includes a reservoir, liquid pump and a thermal exchange system for the application of thermal therapy as well as a dock. The second section of the device includes an air compressor and at least one controller for the application of compression therapy and can be operated independently from the first section. Additionally, the second section may be engaged with a dock of the first section.
Abstract:
An optoelectronic device includes a first electrode, a quantum dot layer disposed on the first electrode including a plurality of quantum dots, a fullerene layer disposed directly on the quantum dot layer wherein the quantum dot layer and the fullerene layer form an electronic heterojunction, and a second electrode disposed on the fullerene layer. The device may include an electron blocking layer. The quantum dot layer may be modified by a chemical treatment to exhibit increased charge carrier mobility.
Abstract:
The above objectives are accomplished according to the present invention by providing a filter medium for operating environments needing static electricity dissipation to help reduce ignition sources comprising: a substrate of non-woven felt including a polymeric fiber; a conductive scrim having a grid of conductive filaments adjacent to said substrate layer; and, a top layer of non-woven felt including a polymeric fiber and copolymer fiber blend having a melt temperature greater than 100° C. wherein said substrate layer, said conductive scrim and said top layer are manufactured into said filter medium by mechanical web formation.