摘要:
A semiconductor structure with high breakdown voltage and high resistance and method for manufacturing the same. The semiconductor structure at least comprises a substrate having a first conductive type; a deep well having a second conductive type formed in the substrate; two first wells having the first conductive type and formed within the deep well; a second well having the first conductive type and formed between the two first wells within the deep well, and an implant dosage of the second well lighter than an implant dosage of each of the two first wells; and two first doping regions having the first conductive type and respectively formed within the two first wells.
摘要:
The high voltage integrated circuit is disclosed. The high voltage integrated circuit comprises a low voltage control circuit, a floating circuit, a P substrate, a deep N well disposed in the substrate and a plurality of P wells disposed in the P substrate. The P wells and deep N well serve as the isolation structures. The low voltage control circuit is located outside the deep N well and the floating circuit is located inside the deep N well. The deep N well forms a high voltage junction barrier for isolating the control circuit from the floating circuit.
摘要:
The high voltage integrated circuit comprises a P substrate. An N well barrier is disposed in the substrate. Separated P diffusion regions forming P wells are disposed in the substrate for serving as the isolation structures. The low voltage control circuit is located outside the N well barrier. A floating circuit is located inside the N well barrier. In order to develop a high voltage junction barrier in between the floating circuit and the substrate, the maximum space of devices of the floating circuit is restricted.
摘要:
A Schottky device and a semiconductor process of making the same are provided. The Schottky device comprises a substrate, a deep well, a Schottky contact, and an Ohmic contact. The substrate is doped with a first type of ions. The deep well is doped with a second type of ions, and formed in the substrate. The Schottky contact contacts a first electrode with the deep well. The Ohmic contact contacts a second electrode with a heavily doped region with the second type of ions in the deep well. Wherein the deep well has a geometry gap with a width formed under the Schottky contact, the first type of ions and the second type of ions are complementary, and the width of the gap adjusts the breakdown voltage.
摘要:
The high voltage integrated circuit comprises a P substrate. An N well barrier is disposed in the substrate. Separated P diffusion regions forming P wells are disposed in the substrate for serving as the isolation structures. The low voltage control circuit is located outside the N well barrier. A floating circuit is located inside the N well barrier. In order to develop a high voltage junction barrier in between the floating circuit and the substrate, the maximum space of devices of the floating circuit is restricted.
摘要:
The present invention provides a self-driven LDMOS which utilizes a parasitic resistor between a drain terminal and an auxiliary region. The parasitic resistor is formed between two depletion boundaries in a quasi-linked deep N-type well. When the two depletion boundaries pinch off, a gate-voltage potential at a gate terminal is clipped at a drain-voltage potential at said drain terminal. Since the gate-voltage potential is designed to be equal to or higher than a start-threshold voltage, the LDMOS is turned on accordingly. Besides, no additional die space and masking process are needed to manufacture the parasitic resistor. Furthermore, the parasitic resistor of the present invention does not lower the breakdown voltage and the operating speed of the LDMOS. In addition, when the two depletion boundaries pinch off, the gate-voltage potential does not vary in response to an increment of the drain-voltage potential.
摘要:
Voltage-controlled semiconductor structures, voltage-controlled resistors, and manufacturing processes are provided. The semiconductor structure comprises a substrate, a first doped well, and a second doped well. The substrate is doped with a first type of ions. The first doped well is with a second type of ions and is formed in the substrate. The second doped well is with the second type of ions and is formed in the substrate. The first type of ions and the second type of ions are complementary. A resistor is formed between the first doped well and the second doped well. A resistivity of the resistor is controlled by a differential voltage. A resistivity of the resistor relates to a first depth of the first doped well, a second depth of the second doped well, and a distance between the first doped well and the second doped well. The resistivity of the resistor is higher than that of a well resistor formed in a single doped well with the second type of ions.
摘要:
A semiconductor structure of a high side driver includes an ion-doped junction. The ion-doped junction includes a substrate and a deep well. The deep well is formed in the substrate and has a first concave structure. The ion-doped junction includes a semiconductor region connected to the first concave structure of the deep well and having substantially the same ion-doping concentration as the substrate.
摘要:
The present invention proposes a voltage-clipping device utilizing a pinch-off mechanism formed by two depletion boundaries. A clipping voltage of the voltage-clipping device can be adjusted in response to a gate voltage; a gap of a quasi-linked well; and a doping concentration and a depth of the quasi-linked well and a well with complementary doping polarity to the quasi-linked well. The voltage-clipping device can be integrated within a semiconductor device as a voltage stepping down device in a tiny size, compared to traditional transformers.
摘要:
A semiconductor structure with high breakdown voltage and high resistance and method for manufacturing the same. The semiconductor structure at least comprises a substrate having a first conductive type; a deep well having a second conductive type formed in the substrate; two first wells having the first conductive type and formed within the deep well; a second well having the first conductive type and formed between two first wells within the deep well, and a implant dosage of the second well lighter than a implant dosage of the first well; and two first doping regions having the first conductive type and respectively formed within the first wells.