Abstract:
A polysiloxane-based prepolymer of a three-dimensional network structure produced by hydrolysis-condensation of a first mixture having a tetra-alkoxysilane compound, an ethylenically unsaturated organosiloxane monomer, and a hydrophilic silicon-containing polyfunctional monomer. A hydrogel is prepared by polymerizing a second mixture having the aforesaid polysiloxane-based prepolymer, an acrylated silicon-containing monomer, and an ethylenically unsaturated hydrophilic monomer.
Abstract:
A polysiloxane-based prepolymer of a three-dimensional network structure produced by hydrolysis-condensation of a first mixture having a tetra-alkoxysilane compound, an ethylenically unsaturated organosiloxane monomer, and a hydrophilic silicon-containing polyfunctional monomer. A hydrogel is prepared by polymerizing a second mixture having the aforesaid polysiloxane-based prepolymer, an acrylated silicon-containing monomer, and an ethylenically unsaturated hydrophilic monomer.
Abstract:
The present invention provides a method for producing a silicone hydrogel having a high water content. The method comprises the following steps: (a) polymerizing a monomer mixture to form the silicone hydrogel, wherein the monomer mixture comprises at least one silicon-containing monomer and at least one ionic monomer; and (b) placing the silicone hydrogel in an alkaline solution for at least 20 minutes, wherein the alkaline solution has a pH not less than 7.5 and the ionic monomer is present in an amount not less than 0.7 wt % based on the total dry weight of the silicone hydrogel.
Abstract:
The present invention provides a silicone hydrogel comprising a reaction product of a monomer mixture for forming the silicone hydrogel and water, wherein the water is present in an amount not less than 50 wt % based on the total weight of the silicone hydrogel. The monomer mixture comprises at least one silicon-containing monomer and at least one ionic monomer, wherein the ionic monomer is present in an amount not less than 0.7 wt % based on the total dry weight of the silicone hydrogel. The present invention also provides ocular articles made from the silicone hydrogel.
Abstract:
A platelet adhesion-resistant material is provided, which includes polytriuret-urethane consisting essentially of repeating structural units of formulae (I) to (III) in a random order, in which when the total number of the three repeating structural units in the polytriuret-urethane is 100, the number of the repeating structural units (I) is about 5 to about 50: in which each R independently represents a C2-C16 alkylene group, a C6-C30 aromatic group, a C6-C30 alicyclic group; n is an integer of 2 to 16; and R1 represents —(OCmH2m)p, in which m is an integer of 2 to 5, and p is an integer of 3 to 150.
Abstract translation:提供了一种抗血小板粘合性材料,其包括基本上由随机顺序的式(I)至(III)的重复结构单元组成的多核苷酸 - 氨基甲酸酯,其中当多萜类化合物的三个重复结构单元的总数, 氨基甲酸酯为100,重复结构单元(I)的数量为约5至约50:其中各R独立地表示C2-C16亚烷基,C6-C30芳族基团,C6-C30脂环族基团; n为2〜16的整数。 并且R 1表示 - (OC m H 2n)p,其中m为2至5的整数,p为3至150的整数。
Abstract:
The present invention provides a process for producing porous polymer materials. In the present invention, a polymer material and a soluble material are mixed in their solid states. The surface of the polymer material is partially dissolved and fused by introducing a solvent. The present invention makes use of a pressure difference while introducing a non-solvent into the polymer material to solidify and resolve the solved polymer material. Then, a substantial amount of water is used to wash the inside soluble material out. Therefore, the porous polymer materials with high porosity and interconnecting pores inside the materials are produced massively and rapidly.
Abstract:
A water-insoluble polyglutamic acid (PGA) fiber and a preparation method thereof are provided. In the preparation method, the PGA is cross-linked by a cross-linking agent and then passes through a spinning nozzle to form PGA fibers. Therefore, the highly water-absorbing PGA, which cannot be spun by conventional methods, can be spun to form PGA fibers and maintain the high water-absorption ability.
Abstract:
A water-insoluble polyglutamic acid (PGA) fiber and a preparation method thereof are provided. In the preparation method, the PGA is cross-linked by a cross-linking agent and then passes through a spinning nozzle to form PGA fibers. Therefore, the highly water-absorbing PGA, which cannot be spun by conventional methods, can be spun to form PGA fibers and maintain the high water-absorption ability.
Abstract:
A thermo-sensitve copolymer of following formula; is disclosed; wherein R1 is hydrogen, or —C(═O)—R2; R2 is C7-30 alkyl substituted or unsubstituted with functional groups; R3 is hydrogen, or C1-6 alkyl; and x, y or z individually is an integer greater than 0. The thermo-sensitive copolymers disclosed here are easy to be implanted into a human body through injection. The biodegradability is greatly improved and the cytotoxicity of the copolymers is low.
Abstract translation:下式的热敏共聚物; 被披露 其中R 1是氢或-C(-O)-R 2; R 2是被官能团取代或未取代的C 7-30烷基; R 3是氢或C 1-6烷基; 并且x,y或z分别是大于0的整数。这里公开的热敏共聚物通过注射容易地植入人体。 生物降解性大大提高,共聚物的细胞毒性低。
Abstract:
A cell-cultivating device includes a plurality of culture tanks and a driving device. The culture tanks communicate with each other and have culture medium inside. The driving device forces the culture medium to flow between the culture tanks so as to vertically oscillate medium levels in the culture tanks.