摘要:
A dynamic random access memory cell is described which can operate either in volatile or nonvolatile mode. When operating in a volatile mode, the memory cell operates in the same manner as a conventional dynamic random access memory cell, that is, with charge being stored and discharged from a capacitor in the memory cell. Upon receipt of a suitable signal, however, the cell can be switched to a nonvolatile mode of operation. In this mode of operation, a pulse applied to the capacitor can place a ferroelectric film in the desired polarization state to represent the binary data. The ferroelectric film will hold its polarization state until the data is recalled and the cell reverts to operating in a volatile mode.
摘要:
A semiconductor structure includes of a plurality of semiconductor fins overlying an insulator layer, a gate dielectric overlying a portion of said semiconductor fin, and a gate electrode overlying the gate dielectric. Each of the semiconductor fins has a top surface, a first sidewall surface, and a second sidewall surface. Dopant ions are implanted at a first angle (e.g., greater than about 7°) with respect to the normal of the top surface of the semiconductor fin to dope the first sidewall surface and the top surface. Further dopant ions are implanted with respect to the normal of the top surface of the semiconductor fin to dope the second sidewall surface and the top surface.
摘要:
A silicon-on-insulator semiconductor device which includes a substrate; an insulator layer overlying the substrate; a plurality of strained silicon islands overlying the insulator layer, the strained silicon islands are isolated from each other by mesa isolation; and a plurality of transistors formed on the strained silicon islands. A method for fabricating the silicon-on-insulator semiconductor device is further disclosed.
摘要:
A decoupling capacitor is formed on a semiconductor substrate that includes a silicon surface layer. A substantially flat bottom electrode is formed in a portion of the semiconductor surface layer. A capacitor dielectric overlies the bottom electrode. The capacitor dielectric is formed from a high permittivity dielectric with a relative permittivity, preferably greater than about 5. The capacitor also includes a substantially flat top electrode that overlies the capacitor dielectric. In the preferred application, the top electrode is connected to a first reference voltage line and the bottom electrode is connected to a second reference voltage line.
摘要:
Provided is a method that includes forming a first semiconductor layer on a semiconductor substrate, growing a second semiconductor layer on the first semiconductor layer, forming composite shapes on the first semiconductor layer, each composite shape comprising of an overlying oxide-resistant shape and an underlying second semiconductor shape, with portions of the first semiconductor layer exposed between the composite shapes, forming spacers on sides of the composite shapes, forming buried silicon oxide regions in exposed top portions of the first semiconductor layer, and in portions of the first semiconductor layer located underlying second semiconductor shapes, selectively removing the oxide-resistant shapes and spacers resulting in the second semiconductor shapes, and forming a semiconductor device in a second semiconductor shape wherein a first portion of the semiconductor device overlays the first semiconductor layer and wherein second portions of the semiconductor device overlays a buried silicon oxide region.
摘要:
A semiconductor-on-insulator structure includes a substrate and a buried insulator stack overlying the substrate. The buried insulator stack includes a first dielectric layer and a recess-resistant layer overlying the first dielectric layer. A second dielectric layer can overlie the recess-resistant layer. A semiconductor layer overlying the buried insulator stack. Active devices, such as transistors and diodes, can be formed in the semiconductor layer.
摘要:
A semiconductor-on-insulator device includes a silicon active layer with a crystal direction placed over an insulator layer. The insulator layer is placed onto a substrate with a crystal direction. Transistors oriented on a direction are formed on the silicon active layer.
摘要:
A method for forming a gate electrode for a multiple gate transistor provides a doped, planarized gate electrode material which may be patterned using conventional methods to produce a gate electrode that straddles the active area of the multiple gate transistor and has a constant transistor gate length. The method includes forming a layer of gate electrode material having a non-planar top surface, over a semiconductor fin. The method further includes planarizing and doping the gate electrode material, without doping the source/drain active areas, then patterning the gate electrode material. Planarization of the gate electrode material may take place prior to the introduction and activation of dopant impurities or it may follow the introduction arid activation of dopant impurities. After the gate electrode is patterned, dopant impurities are selectively introduced to the semiconductor fin to form source/drain regions.
摘要:
An inverter that includes a first multiple-gate transistor including a source connected to a power supply, a drain connected to an output terminal, and a gate electrode; a second multiple-gate transistor including a source connected to a ground, a drain connected to the output terminal, and a gate electrode; and an input terminal connected to the gate electrodes of the first and second multiple-gate transistors. Each of the first and second multiple-gate transistors may further include a semiconductor fin formed vertically on an insulating layer on top of a substrate, a gate dielectric layer overlying the semiconductor fin, and a gate electrode wrapping around the semiconductor fin separating the source and drain regions.