Magnetic Resonance Fingerprinting (MRF) Serial Artificial Neural Network (ANN) Sequence Design
    2.
    发明申请
    Magnetic Resonance Fingerprinting (MRF) Serial Artificial Neural Network (ANN) Sequence Design 审中-公开
    磁共振指纹(MRF)串行人工神经网络(ANN)序列设计

    公开(公告)号:US20150302297A1

    公开(公告)日:2015-10-22

    申请号:US14682220

    申请日:2015-04-09

    Abstract: Example apparatus and methods employ an artificial neural network (ANN) to automatically design magnetic resonance (MR) pulse sequences. The ANN is trained using transverse magnetization signal evolutions having arbitrary initial magnetizations. The trained up ANN may then produce an array of signal evolutions associated with a pulse sequence having user selectable pulse sequence parameters that vary in degrees of freedom associated with magnetic resonance fingerprinting (MRF). Efficient and accurate approaches are provided for predicting user controllable MR pulse sequence settings including, but not limited to, acquisition period and flip angle (FA). The acquisition period and FA may be different in different sequence blocks in the pulse sequence produced by the ANN. Predicting user controllable MR pulse sequence settings for both conventional MR and MRF facilitates achieving desired signal characteristics from a signal evolution produced in response to an automatically generated pulse sequence.

    Abstract translation: 示例性装置和方法采用人造神经网络(ANN)自动设计磁共振(MR)脉冲序列。 使用具有任意初始磁化的横向磁化信号演化训练ANN。 然后训练的ANN可以产生与具有与磁共振指纹图像(MRF)相关的自由度变化的用户可选择的脉冲序列参数的脉冲序列相关联的信号演化阵列。 提供了高效准确的方法来预测用户可控的MR脉冲序列设置,包括但不限于采集周期和翻转角(FA)。 在ANN产生的脉冲序列中,采集周期和FA可能不同。 预测常规MR和MRF的用户可控MR脉冲序列设置有助于从响应于自动产生的脉冲序列产生的信号演进实现期望的信号特性。

Patent Agency Ranking