Abstract:
A film element of an EUV-transmitting wavefront correction device is arranged in a beam path and includes a first layer of first layer material having a first complex refractive index n1=(1−δ1)+iß1, with a first optical layer thickness, which varies locally over the used region in accordance with a first layer thickness profile, and a second layer of second layer material having a second complex refractive index n2=(1−δ2)+iß2, with a second optical layer thickness, which varies locally over the used region in accordance with a second layer thickness profile. The first and second layer thickness profiles differ. The deviation δ1 of the real part of the first refractive index from 1 is large relative to the absorption coefficient ß1 of the first layer material and the deviation δ2 of the real part of the second refractive index from 1 is small relative to the absorption coefficient ß2 of the second layer material.
Abstract:
When simulating illumination and imaging properties of an optical production system when illuminating and imaging an object by use of an optical measurement system of a metrology system, the optical measurement system having an illumination optical unit for illuminating the object and a pupil stop, in particular a displaceable pupil stop, and having an imaging optical unit for imaging the object into an image plane is initially provided. When simulating the properties of the optical production system with the optical measurement system, a plurality of pupil stops are initially provided. Measurement aerial images are then recorded by use of the plurality of pupil stops. A complex mask transfer function is reconstructed from the recorded measurement aerial images and a 3-D aerial image is determined from this function and the illumination setting of the optical production system. This yields an improved simulation method.
Abstract:
A projection apparatus for microlithography for imaging an object field includes an objective, one or a plurality of manipulators for manipulating one or a plurality of optical elements of the objective, a control unit for regulating or controlling the one or the plurality of manipulators, a determining device for determining at least one or a plurality of image aberrations of the objective, a memory comprising upper bounds for one or a plurality of specifications of the objective, including upper bounds for image aberrations and/or movements for the manipulators, wherein when determining an overshooting of one of the upper bounds by one of the image aberrations and/or an overshooting of one of the upper bounds by one of the manipulator movements by regulation or control of at least one manipulator within at most 30000 ms, or 10000 ms, or 5000 ms, or 1000 ms, or 200 ms, or 20 ms, or 5 ms, or 1 ms, an undershooting of the upper bounds can be effected.
Abstract:
A projection apparatus for microlithography for imaging an object field includes an objective, one or a plurality of manipulators for manipulating one or a plurality of optical elements of the objective, a control unit for regulating or controlling the one or the plurality of manipulators, a determining device for determining at least one or a plurality of image aberrations of the objective, a memory comprising upper bounds for one or a plurality of specifications of the objective, including upper bounds for image aberrations and/or movements for the manipulators, wherein when determining an overshooting of one of the upper bounds by one of the image aberrations and/or an overshooting of one of the upper bounds by one of the manipulator movements by regulation or control of at least one manipulator within at most 30000 ms, or 10000 ms, or 5000 ms, or 1000 ms, or 200 ms, or 20 ms, or 5 ms, or 1 ms, an undershooting of the upper bounds can be effected.
Abstract:
A projection exposure apparatus for microlithography includes: an illumination system configured to illuminate a mask in an object field with exposure light; and a projection objective comprising multiple optical elements configured to image the exposure light from the mask in the object field to a wafer in an image field. The projection exposure apparatus is a wafer scanner configured to move the wafer relative to the mask during an exposure of the wafer with the exposure light. The projection objective further includes at least one manipulator configured to manipulate at least one of the optical elements and a control unit configured to control the manipulator. The control unit is configured to manipulate the optical element with the manipulator during the exposure of the wafer with the exposure light.
Abstract:
A pupil stop serves for use in an illumination optical unit of a metrology system for determining, as a result of illumination and imaging under illumination and imaging conditions corresponding to those of an optical production system, an aerial image of an object to be measured. The pupil stop has two pole passage openings for specifying a respective pole of an illumination of the illumination optical unit specified by the pupil stop. In each case at least one stop web passes through the respective pole passage opening and consequently divides the pole passage opening into a plurality of partial pole openings. This yields a pupil stop with which an accuracy of a convergence of the illumination and imaging conditions of the optical production system to the illumination and imaging conditions of the optical measurement system can be improved.
Abstract:
A pupil stop serves for use in an illumination optical unit of a metrology system for determining, as a result of illumination and imaging under illumination and imaging conditions corresponding to those of an optical production system, an aerial image of an object to be measured. The pupil stop has two pole passage openings for specifying a respective pole of an illumination of the illumination optical unit specified by the pupil stop. In each case at least one stop web passes through the respective pole passage opening and consequently divides the pole passage opening into a plurality of partial pole openings. This yields a pupil stop with which an accuracy of a convergence of the illumination and imaging conditions of the optical production system to the illumination and imaging conditions of the optical measurement system can be improved.
Abstract:
A projection exposure apparatus for microlithography includes: an illumination system configured to illuminate a mask in an object field with exposure light; and a projection objective comprising multiple optical elements configured to image the exposure light from the mask in the object field to a wafer in an image field. The projection exposure apparatus is a wafer scanner configured to move the wafer relative to the mask during an exposure of the wafer with the exposure light. The projection objective further includes at least one manipulator configured to manipulate at least one of the optical elements and a control unit configured to control the manipulator. The control unit is configured to manipulate the optical element with the manipulator during the exposure of the wafer with the exposure light.