Abstract:
A system includes a memory that stores instructions and receives a circuit netlist, and includes a processing unit that accesses the memory and executes the instructions. The instructions include an EDA application that includes a test-point flop allocation module that is configured to evaluate the circuit netlist to determine compatibility of the test-point nodes in the circuit netlist. The test-point flop allocation module can further allocate each of the test-point flops to a test-point sharing group comprising a plurality of compatible test-point nodes. The EDA application also includes a circuit layout module configured to generate a circuit layout associated with the circuit design, the circuit layout comprising the functional logic and scan-chains comprising the test-point flops allocated to the test-point sharing groups in response to the circuit netlist. The circuit layout is employable to fabricate an integrated circuit (IC) chip.
Abstract:
A method and apparatus to apply compressed test patterns using a very pin-limited test apparatus to a chip design for use in semiconductor manufacturing test is disclosed. Compression circuitry is inserted into the circuit design and the compressed signals manipulated for communication over a serial interface. On a test apparatus, ATPG may be run, assuming a parallel test interface, resulting in test patterns that may be compressed into a parallel format and then converted into a serial signal. On chip, the serial signal is parallelized, decompressed, and then shifted into the scan chains. An inserted controller generates clocks and various control signals. Conventional test patterns from ATPG may be generated and applied during testing without the need to modify the ATPG program saving time and resources. Hierarchical testing of integrated circuits built with a multiplicity of cores, each having its own embedded compression logic, is also supported.
Abstract:
A method and apparatus to apply compressed test patterns using a very pin-limited test apparatus to a chip design for use in semiconductor manufacturing test is disclosed. Compression circuitry is inserted into the circuit design and the compressed signals manipulated for communication over a serial interface. On a test apparatus, ATPG may be run, assuming a parallel test interface, resulting in test patterns that may be compressed into a parallel format and then converted into a serial signal. On chip, the serial signal is parallelized, decompressed, and then shifted into the scan chains. An inserted controller generates clocks and various control signals. Conventional test patterns from ATPG may be generated and applied during testing without the need to modify the ATPG program saving time and resources. Hierarchical testing of integrated circuits built with a multiplicity of cores, each having its own embedded compression logic, is also supported.
Abstract:
Systems and methods for multiple device diagnostics are disclosed herein. Exemplary embodiments provide for a multiple device diagnostic system having a plurality of electronic devices selected for diagnosis based on at least one selection criterion, a diagnosis engine in data communication with a failure database, and a diagnosis results database in data communication with the diagnosis engine. Embodiments further provide that the failure database contains grouped failure data from at least one previously diagnosed electronic device, that the wherein the processor diagnoses defects in one or more of the plurality of electronic devices using the grouped failure data, and that the processor outputs the diagnosis results to the diagnosis results database.
Abstract:
A method and apparatus for hierarchical compaction of test patterns to be applied to an integrated circuit during test is disclosed. The embodiments apply a hierarchical strategy for categorizing test patterns for compaction. A test pattern is considered against a series of criteria for a compacted test pattern. Where all the criteria are met the test pattern is merged into a compacted test pattern. If the criteria are not all met the test patterns are considered against each of the compacted test patterns in turn. This is repeated for each test pattern to create a set of compacted test patterns conforming to the requirements of the criteria. This method and apparatus provides for fine grained control of low power constraints when testing integrated circuits, and includes benefits such as preventing damage during test from burnout and hot spots, and avoiding failures due to IR drop.