Abstract:
An alignment apparatus for aligning components of an optical assembly include a chuck configured to support the optical assembly thereon, and an adjustable flexure assembly disposed around the chuck. The adjustable flexure assembly includes a plurality of flexures. The plurality of flexures are positioned relative to the chuck such that each of the plurality of flexures contact the optical assembly when the optical assembly is positioned on the chuck. Adjustment of a position of one or more flexures of the plurality of flexures adjusts an alignment of an optical axis of an optical component of the optical assembly when the optical assembly is positioned on the chuck, wherein the alignment apparatus is configured to align optical axes of the optical component to an angle of deviation of less than about 1,000 μrad and provide an extinction ratio within the optical assembly of greater than or equal to 1000:1
Abstract:
An apparatus for holding a thin substrate includes a plurality of positive pressure regions including a porous material having an upper surface and a gas flowing outward from the upper surface, the gas producing a positive pressure above the upper surface in the positive pressure regions. The apparatus includes a plurality of negative pressure regions interspersed with the plurality of positive pressure regions, the negative pressure regions exerting a holding force on a bottom surface of the thin substrate. The negative pressure regions and the positive pressure regions operate to maintain the bottom surface of the thin substrate a distance from the upper surface of the porous material in the positive pressure regions. Methods of holding a thin substrate with the apparatus are also disclosed.
Abstract:
An alignment apparatus for aligning components of an optical assembly include a chuck configured to support the optical assembly thereon, and an adjustable flexure assembly disposed around the chuck. The adjustable flexure assembly includes a plurality of flexures. The plurality of flexures are positioned relative to the chuck such that each of the plurality of flexures contact the optical assembly when the optical assembly is positioned on the chuck. Adjustment of a position of one or more flexures of the plurality of flexures adjusts an alignment of an optical axis of an optical component of the optical assembly when the optical assembly is positioned on the chuck, wherein the alignment apparatus is configured to align optical axes of the optical component to an angle of deviation of less than about 1,000 μrad and provide an extinction ratio within the optical assembly of greater than or equal to 1000:1.
Abstract:
An optical mount includes a support substrate defining an aperture configured to receive an optical element. A support assembly is positioned proximate a perimeter of the aperture. The support assembly includes a resilient member configured reflects in response to relative motion between the optical element and the support substrate. A support plate is positioned on the resilient member and is in contact with the optical element.
Abstract:
An optical system includes a lens assembly and a light source. The lens assembly includes an optical lens positioned to transmit and refract light provided by the light source, and a lens holder coupled to the optical lens and maintaining a position of the optical lens relative to the light source. The optical lens is coupled to the lens holder with a bonding agent arranged in an interrupted configuration at positions proximate to a circumference of the optical lens. The light source provides light to the optical lens of the lens assembly that has an optical footprint that includes a plurality of high-intensity regions separated from one another by low-intensity regions and the bonding agent is positioned in a circumferential orientation relative to the light source such that the bonding agent is spaced apart from the high-intensity regions of the optical footprint of the light.
Abstract:
An optical system includes a lens assembly and a light source. The lens assembly includes an optical lens positioned to transmit and refract light provided by the light source, and a lens holder coupled to the optical lens and maintaining a position of the optical lens relative to the light source. The optical lens is coupled to the lens holder with a bonding agent arranged in an interrupted configuration at positions proximate to a circumference of the optical lens. The light source provides light to the optical lens of the lens assembly. The light provided to the optical lens has an optical footprint that includes a plurality of high-intensity regions separated from one another by low-intensity regions and the bonding agent is positioned in a circumferential orientation relative to the light source such that the bonding agent is spaced apart from the high-intensity regions of the optical footprint of the light.
Abstract:
According to some embodiments a method of assembling an optical system comprises steps of: measuring retardance profiles of a plurality of optical elements, relatively positioning the optical elements in relative orientations that enhance complementarity between the retardance profiles of the optical elements, and securing the combinations of relatively oriented optical elements together, to control or minimize the combined retardance of the stacked optical elements.
Abstract:
An optical mount includes a support substrate defining an aperture configured to receive an optical element. A support assembly is positioned proximate a perimeter of the aperture. The support assembly includes a resilient member configured reflects in response to relative motion between the optical element and the support substrate. A support plate is positioned on the resilient member and is in contact with the optical element.
Abstract:
A compound optical assembly is constructed from a plurality of stacking elements for spacing, aligning, and retaining optical elements within the assembly. Stacking faces of the stacking elements are measured and low-order surface errors are extracted, represented by mathematical approximations having a primary angular frequency. The stacking elements including the optic holders are relatively oriented to promote complementarity between the low-order surface errors of mating stacking faces.
Abstract:
A compound optical assembly is constructed from a plurality of stacking elements for spacing, aligning, and retaining optical elements within the assembly. Stacking faces of the stacking elements are measured and low-order surface errors are extracted, represented by mathematical approximations having a primary angular frequency. The stacking elements including the optic holders are relatively oriented to promote complementarity between the low-order surface errors of mating stacking faces.