GLASS LAMINATES HAVING A CONTROLLED COEFFICIENT OF THERMAL EXPANSION AND METHODS FOR MAKING THE SAME

    公开(公告)号:US20190134944A1

    公开(公告)日:2019-05-09

    申请号:US16096187

    申请日:2017-05-09

    Abstract: Apparatuses and methods for glass laminates having a controlled coefficient of thermal expansion are disclosed. In C one embodiment, a glass laminate includes a glass core having a core thickness (Tcore) and a core coefficient of thermal expansion (CTEcore), a first glass cladding layer and a second glass cladding layer. The first glass cladding layer and the second glass cladding layer are arranged such that the glass core is disposed between the first glass cladding layer and the second glass cladding layer. The first glass cladding layer has a first cladding thickness (Tclad1) and a first clad coefficient of thermal expansion (CTEclad1), and the second glass cladding layer has a second cladding thickness (Tclad2) and a second clad coefficient of thermal expansion (CTEclad2). The glass laminate has a laminate coefficient of thermal expansion (CTEL) within a range of about 35×10−7/° C. to about 90×10−7/° C., the laminate coefficient of thermal expansion (CTEL) defined by: CTEL=((CTEcore×Tcore)+(CTEclad1×Tclad1)+(CTEclad2× Tclad2))/(Tcore+Tclad1+Tclad2).

    Methods and apparatus for forming shaped articles, shaped articles, methods for manufacturing liquid lenses, and liquid lenses

    公开(公告)号:US11577992B2

    公开(公告)日:2023-02-14

    申请号:US16754655

    申请日:2018-10-12

    Abstract: A method includes depositing a surface modification layer on sidewalls of a plurality of cavities of a shaped article. The surface modification layer is formed from a glass material including a mobile component. The shaped article is formed from a glass material, a glass ceramic material, or a combination thereof. At least a portion of the mobile component is migrated from the surface modification layer into surface regions of the sidewalls of the shaped article, whereby subsequent to the migration, the surface regions have a reduced annealing point compared to a bulk of the shaped article. The surface modification layer and the surface regions of the sidewalls are reflowed. A surface roughness of the surface modification layer disposed on the sidewalls following the reflowing is less than a surface roughness of the sidewalls prior to the depositing.

    Glass laminates having a controlled coefficient of thermal expansion and methods for making the same

    公开(公告)号:US11529792B2

    公开(公告)日:2022-12-20

    申请号:US16096187

    申请日:2017-05-09

    Abstract: Apparatuses and methods for glass laminates having a controlled coefficient of thermal expansion are disclosed. In C one embodiment, a glass laminate includes a glass core having a core thickness (Tcore) and a core coefficient of thermal expansion (CTEcore), a first glass cladding layer and a second glass cladding layer. The first glass cladding layer and the second glass cladding layer are arranged such that the glass core is disposed between the first glass cladding layer and the second glass cladding layer. The first glass cladding layer has a first cladding thickness (Tclad1) and a first clad coefficient of thermal expansion (CTEclad1), and the second glass cladding layer has a second cladding thickness (Tclad2) and a second clad coefficient of thermal expansion (CTEclad2). The glass laminate has a laminate coefficient of thermal expansion (CTEL) within a range of about 35×10−7/° C. to about 90×10−7/° C., the laminate coefficient of thermal expansion (CTEL) defined by: CTEL=((CTEcore×Tcore)+(CTEclad1×Tclad1)+(CTEclad2× Tclad2))/(Tcore+Tclad1+Tclad2).

Patent Agency Ranking