Abstract:
A method is provided in one example embodiment and may include receiving, by a Service Capability Exposure Function (SCEF), a request to send data to a user equipment (UE), wherein a context for the UE is not available at the SCEF when the request is received; querying a subscriber database to determine whether the context for the UE is available at the subscriber database; and sending the data for the UE to a Mobility Management Entity (MME) by the SCEF using an interface directly interconnecting the MME and the SCEF based on a determination that the context for the UE is available at the subscriber database.
Abstract:
Systems and methods are provided for avoiding excessive paging through messaging-based solutions on a mobile network that supports multiple radio access technologies (RATs), such as both Long Term Evolution (LTE) and Global System for Mobile Communications (GSM)/Enhanced Data Rates for GSM Evolution (EDGE)/Universal Mobile Communications System (UMTS) technology, even in situations where the present location of the UE is not known. Preventing paging in access networks where the UE is not present ensures efficient use of radio resources in the paging channel and reduces signaling load on other interfaces. In one embodiment, a user equipment (UE) is simultaneously connected to a Serving General Packet Radio System (GPRS) Support Node (SGSN) and a Mobility Management Entity (MME). By using signaling between the SGSN and MME, the location of the UE may be tracked without requiring unnecessary paging, even when the UE is in IDLE mode or is inactive.
Abstract:
A method is provided in one example embodiment and includes creating an initial sample set comprising a plurality of notification messages, where each of the notification messages is associated with one of a plurality of bearers each of which has a first parameter associated therewith. The method further comprises prioritizing the notification messages of the initial sample set according to a value of the first parameter of the associated bearer to create a prioritized sample set and optimizing the prioritized sample set to create an optimized sample set. The method further comprises applying a throttle factor to the optimized sample to remove a number of low priority notification messages from the prioritized sample set to create a final set of notification messages to be transmitted to a network element.
Abstract:
Systems and methods are provided for avoiding excessive paging through messaging-based solutions on a mobile network that supports multiple radio access technologies (RATs), such as both Long Term Evolution (LTE) and Global System for Mobile Communications (GSM)/Enhanced Data Rates for GSM Evolution (EDGE)/Universal Mobile Communications System (UMTS) technology, even in situations where the present location of the UE is not known. Preventing paging in access networks where the UE is not present ensures efficient use of radio resources in the paging channel and reduces signaling load on other interfaces. In one embodiment, a user equipment (UE) is simultaneously connected to a Serving General Packet Radio System (GPRS) Support Node (SGSN) and a Mobility Management Entity (MME). By using signaling between the SGSN and MME, the location of the UE may be tracked without requiring unnecessary paging, even when the UE is in IDLE mode or is inactive.
Abstract:
Systems and methods are provided for avoiding excessive paging through messaging-based solutions on a mobile network that supports multiple radio access technologies (RATs), such as both Long Term Evolution (LTE) and Global System for Mobile Communications (GSM)/Enhanced Data Rates for GSM Evolution (EDGE)/Universal Mobile Communications System (UMTS) technology, even in situations where the present location of the UE is not known. Preventing paging in access networks where the UE is not present ensures efficient use of radio resources in the paging channel and reduces signaling load on other interfaces. In one embodiment, a user equipment (UE) is simultaneously connected to a Serving General Packet Radio System (GPRS) Support Node (SGSN) and a Mobility Management Entity (MME). By using signaling between the SGSN and MME, the location of the UE may be tracked without requiring unnecessary paging, even when the UE is in IDLE mode or is inactive.
Abstract:
A method is provided in one example embodiment and may include receiving, by a Service Capability Exposure Function (SCEF), a request to send data to a user equipment (UE), wherein a context for the UE is not available at the SCEF when the request is received; querying a subscriber database to determine whether the context for the UE is available at the subscriber database; and sending the data for the UE to a Mobility Management Entity (MME) by the SCEF using an interface directly interconnecting the MME and the SCEF based on a determination that the context for the UE is available at the subscriber database.
Abstract:
A method is provided in one example embodiment and includes creating an initial sample set comprising a plurality of notification messages, where each of the notification messages is associated with one of a plurality of bearers each of which has a first parameter associated therewith. The method further comprises prioritizing the notification messages of the initial sample set according to a value of the first parameter of the associated bearer to create a prioritized sample set and optimizing the prioritized sample set to create an optimized sample set. The method further comprises applying a throttle factor to the optimized sample to remove a number of low priority notification messages from the prioritized sample set to create a final set of notification messages to be transmitted to a network element.