Abstract:
The present invention discloses a drive system of a scraper conveyor and a control method. The drive system includes a nose sprocket, a tail sprocket, a nose sprocket drive mechanism, and a tail sprocket drive mechanism, where the nose sprocket drive mechanism is a hydraulic motor I, and the tail sprocket drive mechanism is a hydraulic motor II; and a hydraulic system that drives the hydraulic motor I and a hydraulic system that drives the hydraulic motor II include same hydraulic elements, and both include a three-position four-way solenoid directional valve, a two-position two-way solenoid directional valve, a two-position three-way solenoid directional valve, an accumulator, and an oil supplement valve group. The present invention is applicable to rapid starting and stopping of the scraper conveyor in a heavy load status while adjusting chain tension in real time, thereby resolving a power imbalance problem in a dual-drive system, and has a simple structure and a long service life.
Abstract:
A large-tonnage coal dropping buffer skip for a mine is disclosed. A loading skip box (14) is installed at the top of a large-tonnage skip (12), a coal dropping buffer device (13) is arranged on the inner sidewall of the large-tonnage skip (12), and the coal dropping buffer device (13) includes: a frame (1) fixedly connected with the inner sidewall of the large-tonnage skip (12); a lining plate guide frame (6) connected with the frame (1) through shock absorbers (2), guide sliding grooves being formed in the lining plate guide frame (6); a lining plate support (4) slidably nested in the guide sliding grooves in the lining plate guide frame (6), hoisting lugs (9) for hoisting being arranged at the top end of the lining plate support (4); and a lining plate (5) detachably connected with the lining plate support (4) through fasteners (7).
Abstract:
A drilling and bursting heading machine, comprising a drilling and bursting device (1), an angle control device, a forward-backward telescopic device and a cantilever type heading machine (2), wherein the drilling and bursting device (1) is mounted on a forward-backward moving component of the forward-backward telescopic device by means of the angle control device, and the forward-backward telescopic device is mounted on the cantilever type heading machine (2); the drilling and bursting device (1) comprises a fixing support (1-20), as well as a rock drill component and a bursting component fixedly mounted on the fixing support (1-20) respectively; the angle control device comprises a mounting base (1-15), an auxiliary rotary hydraulic motor (1-14), an adjustment hydraulic cylinder (1-13) and a main rotary hydraulic motor (1-12); and when the forward-backward moving component of the forward-backward telescopic device completely extends out, the distance from a front end of the drilling and bursting device (1) to a working plane is shorter than the distance from a front end of a cutting head of the cantilever type heading machine (2) to the working plane. The drilling and bursting heading machine has a compact structure and is able to implement quick drilling and bursting on a hard rock stratum having a rock hardness f greater than 10 without increasing the energy consumption, so that the heading efficiency is improved and potential safety risks are reduced.
Abstract:
The present invention relates to a horizontally movable vertical shaft rope guide and a regulating method thereof, which are suitable for guiding of hoisting containers in vertical shafts. The vertical shaft rope guide comprises a hoisting rope, and two hoisting containers suspended from the tail ends of the hoisting rope, wherein, cage guide ropes are led through guide cage lugs arranged on the two sides respectively, a tensioner arranged on the ground at the shaft top is connected to the upper end of each cage guide rope, and a connector arranged under a steel slot at the shaft bottom is connected to the lower end of each cage guide rope; a hydraulic cylinder is connected at the other side of each tensioner and the corresponding connector, and the hydraulic cylinder is connected to the tensioner or connector. During hoisting in the vertical shaft, the hydraulic cylinders are controlled to act in advance, to push the tensioners or connectors to move towards the center between the two hoisting containers, so that the cage guide ropes led through the guide cage lugs on the two sides of the hoisting containers get close to each other at the same time and wrap the hoisting container; thus, the horizontal displacement of the hoisting containers is restrained, and the impact of air flow on the two hoisting containers is minimized when the two hoisting containers meet.
Abstract:
A coal dropping impact energy buffer monitoring device and method for a coal mine belt conveying system. The device comprises a buffer belt roller group, a buffer bracket, buffer springs, impact energy collecting dampers, a signal converting and sending device, and an installation bottom board, the buffer belt roller group being fixed to the buffer bracket, the upper ends and the lower ends of the buffer springs and the impact energy collecting dampers being respectively connected to the buffer bracket and the installation bottom board, and the impact energy collecting dampers being connected to the signal converting and sending device fixed to the installation bottom board through guide lines.
Abstract:
A coal dropping impact energy buffer monitoring device and method for a coal mine belt conveying system. The device comprises a buffer belt roller group, a buffer bracket, buffer springs, impact energy collecting dampers, a signal converting and sending device, and an installation bottom board, the buffer belt roller group being fixed to the buffer bracket, the upper ends and the lower ends of the buffer springs and the impact energy collecting dampers being respectively connected to the buffer bracket and the installation bottom board, and the impact energy collecting dampers being connected to the signal converting and sending device fixed to the installation bottom board through guide lines.
Abstract:
An adjustable intermediate disk body of large double-layer cage comprises cage columns, a main intermediate disk body, and a chain block and a connecting piece. An intermediate disk guide rail beam is arranged on the inner side of the cage columns, wedge bases are symmetrically arranged on the two sides of the lower part of the intermediate disk guide rail beam, a limited block with a bolt hole is arranged on the upper part of the intermediate disk guide rail beam, and an anti-disengaging plate is arranged on the intermediate disk guide rail beam. Intermediate disk wedge bodies, which match the wedge faces of the wedge bases and can only move vertically along the intermediate disk guide rail beams, are arranged on the two side faces of the main intermediate disk body, at positions corresponding to the intermediate disk guide rail beams; an intermediate disk guide wheel that is fitted with the intermediate disk guide rail beam and an intermediate disk guide wheel seat with a bolt hole are arranged on the upper part of the intermediate disk wedge body.
Abstract:
Disclosed are an online monitoring system for a crack on a hoist spindle and an operation method thereof. The system comprises: a rope power part, a crack detection part, a wireless transmission part, and a computer. The rope power part comprises two traction ropes, two guide wheels, two stepper motors, and two stepper motor drivers. The crack detection part comprises a spiral tube guide rail, a sliding body, and an ultrasonic generator. The wireless transmission part comprises three zigbee wireless sensing modules. The zigbee wireless sensing modules receive instructions from the computer and transmit the instructions to the stepper motor drivers to control the motors to rotate. The stepper motors drive the guide wheels to rotate to realize the winding of the ropes, so as to pull the sliding body to slide on the spiral tube guide rail. The ultrasonic generator clamped on the sliding body monitors the rotating spindle along the spiral tube guide rail. The zigbee wireless sensing modules transmit the detected data to the computer in real time. The present invention can effectively monitor a hoist spindle in time before a failure occurs, thereby avoiding safety accidents.
Abstract:
The present invention discloses an embedded scraper rotation angle detection device for a scraper conveyor and a detection method. The detection device includes two extensible detection devices, two signal detection units and a remote processing unit. The two extensible detection devices and the two signal detection units are disposed at two ends of a scraper respectively. The signal detection units detect movement displacements of the extensible detection devices in real time and send out signals through wireless transmission modules, the wireless transmission modules and a wireless receiving module are used for data transmission, and a signal display processing module is used to calculate a rotation angle value of the scraper in real time, output and display the rotation angle value simultaneously, compare the rotation angle value measured in real time with a set safety threshold, and send out an alarm indication when the rotation angle value exceeds the safety threshold.
Abstract:
A multiple-state health monitoring apparatus for critical components in a hoisting system includes a frame. The frame is a square structure formed by welding a plurality of rectangular steels. A steel wire rope is arranged around a periphery of the square structure. A power system, a friction-and-wear apparatus, a brake-and-wear apparatus, and a tensioning apparatus are sequentially mounted from left to right on a bottom layer of the square structure. A bearing signal collection system, a tension sensor, an excitation apparatus, and a steel-wire-rope image collection system are sequentially mounted from left to right on a top layer of the square structure. The steel wire rope sequentially passes through all the apparatuses or systems and is driven by the power system to perform circling. All the apparatuses or systems are used to monitor an operation status of the steel wire rope.