Abstract:
A method for preparing a polybutadiene latex comprises providing an emulsion polymerization medium by reacting a mixture of water, butadiene monomers, a surfactant, a chain transfer agent, an initiator and an electrolyte, preferably at a temperature of about 60˜80° C., preferably for about 8˜16 hours, and agglomerating the resulting emulsion polymerization medium, preferably at a temperature of about 5˜20° C. higher than the polymerization temperature, preferably for about 4˜12 hours by adding a surfactant and an agglomerating agent to the emulsion polymerization medium in consecutive order. The agglomerating agent is prepared a method comprising a first step of forming agglomerating seeds by batch polymerization of an alkyl acrylate of C1˜C12, an anionic surfactant and an anionic initiator, a second step of growing the agglomerating agent in semi-batch polymerization by adding an alkyl acrylate of C1˜C12 and anionic comonomer to the resulting polymer of the first step, and a third step of copolymerizing the ionic comonomer at the surface of the agglomerating agent to be prepared in a sufficient amount, by adding an alkyl acrylate of C1˜C12, an ionic comonomer and an anionic initiator to the resulting polymer of the second step.
Abstract:
A method for preparing a polybutadiene latex comprises providing an emulsion polymerization medium by reacting water, butadiene monomers, a surfactant, a chain transfer agent, an initiator and an electrolyte, preferably at a temperature of about 60.about.80.degree. C., preferably for about 8.about.16 hours, and agglomerating the resulting emulsion polymerization medium, preferably at a temperature of about 5.about.20.degree. C. higher than the polymerization temperature, preferably for about 4.about.12 hours by adding a surfactant and an agglomerating agent to the emulsion polymerization medium in consecutive order. The agglomerating agent is prepared a method comprising a first step of forming agglomerating seeds by batch polymerization of an alkyl acrylate of C.sub.1 .about.C.sub.12, an anionic surfactant and an anionic initiator, a second step of growing the agglomerating agent in semi-batch polymerization by adding an alkyl acrylate of C.sub.1 .about.C.sub.12 and an ionic comonomer to the resulting polymer of the first step, and a third step of copolymerizing the ionic comonomer at the surface of the agglomerating agent to be prepared in a sufficient amount, by adding an alkyl acrylate of C.sub.1 .about.C.sub.12, an ionic comonomer and an anionic initiator to the resulting polymer of the second step.
Abstract:
An organic light emitting diode (OLED) display and a method of manufacturing the same, the OLED display including a flexible substrate, a driving circuit unit on the flexible substrate, the driving circuit unit including a thin film transistor (TFT), an organic light emission element on the flexible substrate, the organic light emission element being connected to the driving circuit unit, an encapsulating thin film on the flexible substrate, the encapsulating thin film covering the organic light emission element and the driving circuit unit, a first protection film facing the encapsulating thin film, a second protection film facing the flexible substrate, a first sealant disposed between the encapsulating thin film and the first protection film, and a second sealant disposed between the flexible substrate and the second protection film.
Abstract:
A flexible display comprises a flexible substrate made of plastic material, a display element on a first surface of the flexible substrate, and a surface residual film containing at least one of a metal material or a metal oxide material. The surface residual film is bonded to at least a part of a second surface of the flexible substrate. The second surface is opposed to the first surface. A method for manufacturing a flexible display comprises preparing a glass substrate, forming adhesive material film on the glass substrate, the adhesive material film being made of at least one of a metal material or a metal oxide material, and forming a flexible substrate from plastic material on the adhesive material film.
Abstract:
An organic light emitting display device and a manufacturing method of forming an inorganic layer formed on the top of the sealing film with nitride are disclosed. In one embodiment, the organic light emitting display device includes: i) a substrate on which at least one organic light emitting diode is formed and ii) a sealing film stacked with at least one organic film and inorganic film and sealing the organic light emitting diode, wherein the top of the sealing film is formed of an inorganic film formed of nitride.
Abstract:
An organic light emitting diode (OLED) display and a method of manufacturing the same, the OLED display including a flexible substrate, a driving circuit unit on the flexible substrate, the driving circuit unit including a thin film transistor (TFT), an organic light emission element on the flexible substrate, the organic light emission element being connected to the driving circuit unit, an encapsulating thin film on the flexible substrate, the encapsulating thin film covering the organic light emission element and the driving circuit unit, a first protection film facing the encapsulating thin film, a second protection film facing the flexible substrate, a first sealant disposed between the encapsulating thin film and the first protection film, and a second sealant disposed between the flexible substrate and the second protection film.
Abstract:
A method of driving a double-sided light emitting display may include driving a panel to emit light toward a first surface and a second surface thereof, the panel including a first light controlling panel on the first surface thereof, a second light controlling panel on the second surface thereof, and pixels formed therein, and controlling transmission of light through each of the first light controlling panel and the second light controlling panel.