Abstract:
Interlocking laminated structural roofing panels have a lightweight foamed core sandwiched between outer and inner layers of materials such as wood, polymer materials, fire resistant and/or waterproof membranes, and metal layers. At least one layer is a self-gripping metal sheet that grips and bonds mechanically to adjacent layers such as wood layers. A self-gripping metal sheet may be used on both sides of the roofing panels to form a panel that is strong, structurally robust, and able to span between relatively widely spaced roof rafters with little or no mid-span support. Interlocking features along the edges of the panels interlock adjacent panels together to form a strong monolithic roof covering for a roof.
Abstract:
A method for applying coating material to a moving substrate such as a glass mat web in shingle manufacturing includes conveying the web through a narrow channel and ejecting at least one coating material onto at least one surface of the web as it is conveyed through the channel. In a preferred embodiment, multiple coating materials may be applied to one surface of the web and multiple coating materials may be applied to the other surface of the web. The coating materials may be molten asphalt or other coating materials. The pressure of the coating material is controlled as a function of the line speed of the moving substrate to ensure consistently thick coatings at various speeds, including relatively high speeds, of the web. An apparatus in the form of a slot die is disclosed for carrying out the method of the invention.
Abstract:
An apparatus is disclosed for applying a strip of sealant to a web of roofing shingle stock as the web moves along a processing path. The apparatus includes an applicator wheel disposed on one side of the processing path and having a peripheral surface. The applicator wheel is rotatably mounted and oriented such that rotation of the applicator wheel moves the peripheral surface of the applicator wheel toward, adjacent to, and then away from the moving web of shingle stock. A nozzle preferably in the form of a slot die is disposed adjacent to the peripheral surface of the applicator wheel. A source of sealant is supplied and a delivery system is configured to deliver the sealant from the source of the sealant to the slot die under a predetermined pressure. The slot die and delivery system are configured to project a stream of sealant toward and onto the peripheral surface of the applicator wheel at a predetermined speed. This applies a coating of sealant to the peripheral surface of the applicator wheel. The moving web of roofing shingle stock engages the sealant on the peripheral surface of the applicator wheel as the peripheral surface moves adjacent to the web. This, in turn, draws sealant from the peripheral surface of the applicator and onto the web of roofing shingle stock thereby applying the strip of sealant to the web.
Abstract:
A method is disclosed for die coating a moving substrate with a high viscosity material such as a polymer. The method includes heating and mixing ingredients to form a homogenous mixture, pumping the mixture around a circulation loop with a first pump, maintaining a predetermined pressure of the mixture within the circulation loop, drawing mixture from the circulation loop with a second pump, delivering the mixture using the second pump to an extrusion die adjacent the moving substrate to coat the substrate, and controlling the second pump as a function of at least the speed of the moving substrate to maintain predetermined characteristics of the coating mixture applied to the moving substrate. An apparatus for carrying out the method also is disclosed.
Abstract:
A high speed granule delivery system and method is disclosed for dispensing granules in intermittent patterns onto a moving asphalt coated strip in the manufacture of roofing shingles. The system includes a granule hopper and a rotationally indexable pocket wheel in the bottom of the hopper. A series of pockets are formed in the circumference of the wheel and the pockets are separated by raised lands. A seal on the bottom of the hopper seals against the raised lands as the wheel is indexed. In use, the pockets of the pocket wheel drive through and are filled with granules in the bottom of the hopper. As each pocket is indexed beyond the seal, it is exposed to the moving asphalt coated strip below and its granules fall onto the strip to be embedded in the hot tacky asphalt. The speed at which the wheel is indexed is coordinated with the speed of the asphalt coated strip so that granules and strip are moving at about the same forward speed or at a preselected ratio of speeds when the granules fall onto the strip. Well defined patterns of granules are possible at high production rates.
Abstract:
Systems and methods of applying self-seal strips of multiple different adhesives are disclosed. In one embodiment, two spaced apart spoked applicator wheel assemblies are positioned beneath a web of moving shingle stock such that each of the applicator wheels applies dots of different adhesives in an alternating pattern. In other embodiments, a layer of a second adhesive is deposited onto previously applied dots of a first adhesive to form layered adhesive dots with dual properties of both adhesives.
Abstract:
A high speed granule delivery system and method is disclosed for dispensing granules in intermittent patterns onto a moving asphalt coated strip in the manufacture of roofing shingles. The system includes a granule hopper and a rotationally indexable pocket wheel in the bottom of the hopper. A series of pockets are formed in the circumference of the wheel and the pockets are separated by raised lands. A seal on the bottom of the hopper seals against the raised lands as the wheel is indexed. In use, the pockets of the pocket wheel drive through and are filled with granules in the bottom of the hopper. As each pocket is indexed beyond the seal, it is exposed to the moving asphalt coated strip below and its granules fall onto the strip to be embedded in the hot tacky asphalt. The speed at which the wheel is indexed is coordinated with the speed of the asphalt coated strip so that granules and strip are moving at about the same forward speed or at a preselected ratio of speeds when the granules fall onto the strip. Well defined patterns of granules are possible at high production rates.
Abstract:
A high speed granule delivery system and method is disclosed for dispensing granules in intermittent patterns onto a moving asphalt coated strip in the manufacture of roofing shingles. The system includes a granule hopper and a rotationally indexable pocket wheel in the bottom of the hopper. A series of pockets are formed in the circumference of the wheel and the pockets are separated by raised lands. A seal on the bottom of the hopper seals against the raised lands as the wheel is indexed. In use, the pockets of the pocket wheel drive through and are filled with granules in the bottom of the hopper. As each pocket is indexed beyond the seal, it is exposed to the moving asphalt coated strip below and its granules fall onto the strip to be embedded in the hot tacky asphalt. The speed at which the wheel is indexed is coordinated with the speed of the asphalt coated strip so that granules and strip are moving at about the same forward speed or at a preselected ratio of speeds when the granules fall onto the strip. Well defined patterns of granules are possible at high production rates.
Abstract:
A self-sealing mounting bracket includes an outer shell that defines at least one downwardly facing chamber. A plunger is located in the downwardly facing chamber and is slidable within the chamber. The chamber is filled with sealant either at the manufacturing facility or in the field. Larger openings are formed in the top of the outer shell that align with and provide access to bolt holes in the top of the plunger. Smaller openings in the top of the outer shell are for attaching the shell to a roof with lag bolts. The mounting bracket is located on a shingled roof and lag bolts are inserted through the larger openings and threaded into the roof deck. The heads of these lag bolts pass through the larger openings and engage the plungers to press the plungers down in their chambers. This, in turn, compresses, squeezes, and extrudes sealant between the mounting bracket and the roof below forming a water tight seal. The outer shell is then firmly attached to the roof with additional lag bolts inserted through the smaller openings and their aligned bolt holes and threaded into the roof deck. Mounting hardware for items such as solar panels can then be secured to the bracket.
Abstract:
An apparatus is disclosed for applying a strip of sealant to a web of roofing shingle stock as the web moves along a processing path. The apparatus includes an applicator wheel disposed on one side of the processing path and having a peripheral surface. The applicator wheel is rotatably mounted and oriented such that rotation of the applicator wheel moves the peripheral surface of the applicator wheel toward, adjacent to, and then away from the moving web of shingle stock. A nozzle preferably in the form of a slot die is disposed adjacent to the peripheral surface of the applicator wheel. A source of sealant is supplied and a delivery system is configured to deliver the sealant from the source of the sealant to the slot die under a predetermined pressure. The slot die and delivery system are configured to project a stream of sealant toward and onto the peripheral surface of the applicator wheel at a predetermined speed. This applies a coating of sealant to the peripheral surface of the applicator wheel. The moving web of roofing shingle stock engages the sealant on the peripheral surface of the applicator wheel as the peripheral surface moves adjacent to the web. This, in turn, draws sealant from the peripheral surface of the applicator and onto the web of roofing shingle stock thereby applying the strip of sealant to the web.