摘要:
Systems and methods generally directed to enhancing the growth of carbon-based nanostructures are described. In some embodiments, electromagnetic radiation can be used to enhance carbon-based nanostructure growth.
摘要:
Systems and methods for the formation of nanostructures, including carbon-based nanostructures, are generally described. In certain embodiments, substrate configurations and associated methods are described.
摘要:
Systems and methods for the formation of carbon-based nanostructures are generally described. In some embodiments, the nanostructures may be formed on a nanopositor. The nanopositor can comprise, in some embodiments, at least one of metal atoms in a non-zero oxidation state and metalloid atoms in a non-zero oxidation state. For example, the nanopositor may comprise a metal oxide, a metalloid oxide, a metal chalcogenide, a metalloid chalcogenide, and the like. The carbon-based nanostructures may be grown by exposing the nanopositor, in the presence or absence of a growth substrate, to a set of conditions selected to cause formation of carbon-based nanostructures on the nanopositor. In some embodiments, metal or metalloid atoms in a non-zero oxidation state are not reduced to a zero oxidation state during the formation of the carbon-based nanostructures. In some cases, metal or metalloid atoms in a non-zero oxidation state do not form a carbide during the formation of the carbon-based nanostructures.
摘要:
Systems and methods for the formation of carbon-based nanostructures are generally described. In some embodiments, the nanostructures may be formed on a nanopositor. The nanopositor can comprise, in some embodiments, at least one of metal atoms in a non-zero oxidation state and metalloid atoms in a non-zero oxidation state. For example, the nanopositor may comprise a metal oxide, a metalloid oxide, a metal chalcogenide, a metalloid chalcogenide, and the like. The carbon-based nanostructures may be grown by exposing the nanopositor, in the presence or absence of a growth substrate, to a set of conditions selected to cause formation of carbon-based nanostructures on the nanopositor. In some embodiments, metal or metalloid atoms in a non-zero oxidation state are not reduced to a zero oxidation state during the formation of the carbon-based nanostructures. In some cases, metal or metalloid atoms in a non-zero oxidation state do not form a carbide during the formation of the carbon-based nanostructures.
摘要:
Systems and methods for the formation of carbon-based nanostructures are generally described. In some embodiments, the nanostructures may be formed on a nanopositor. The nanopositor can comprise, in some embodiments, at least one of metal atoms in a non-zero oxidation state and metalloid atoms in a non-zero oxidation state. For example, the nanopositor may comprise a metal oxide, a metalloid oxide, a metal chalcogenide, a metalloid chalcogenide, and the like. The carbon-based nanostructures may be grown by exposing the nanopositor, in the presence or absence of a growth substrate, to a set of conditions selected to cause formation of carbon-based nanostructures on the nanopositor. In some embodiments, metal or metalloid atoms in a non-zero oxidation state are not reduced to a zero oxidation state during the formation of the carbon-based nanostructures. In some cases, metal or metalloid atoms in a non-zero oxidation state do not form a carbide during the formation of the carbon-based nanostructures.
摘要:
Generally, the present invention provides methods for the production of materials comprising a plurality of nanostructures such as nanotubes (e.g., carbon nanotubes) and related articles. The plurality of nanostructures may be provided such that their long axes are substantially aligned and, in some cases, continuous from end to end of the sample. For example, in some cases, the nanostructures may be fabricated by uniformly growing the nanostructures on the surface of a substrate, such that the long axes are aligned and non-parallel to the substrate surface. The nanostructures may be, in some instances, substantially perpendicular to the substrate surface. In one set of embodiments, a force with a component normal to the long axes of the nanostructures may be applied to the substantially aligned nanostructures. The application of a force may result in a material comprising a relatively high volume fraction or mass density of nanostructures. In some instances, the application of a force may result in a material comprising relatively closely-spaced nanostructures. The materials described herein may be further processed for use in various applications, such as composite materials (e.g., nanocomposites). For example, a set of aligned nanostructures may be formed, and, after the application of a force, transferred, either in bulk or to another surface, and combined with another material (e.g., to form a nanocomposite) to enhance the properties of the material.
摘要:
Systems and methods for the formation of carbon-based nanostructures using large-scale active growth structures are generally described. In addition, systems and methods related to the formation of carbon-based nanostructures using basalt and/or titanium (e.g., elemental titanium) are generally described. The carbon-based nanostructures can be grown by exposing the large-scale active growth structures, basalt, and/or titanium to a set of conditions selected to cause formation of carbon-based nanostructures on (e.g., directly on) the large-scale active growth structure, basalt, and/or titanium. When basalt and/or titanium are used as all or part of an active growth structure, the basalt and/or titanium can be in any suitable form such as, for example, a planar or non-planar active growth structure (which can have, in some cases, a first cross-sectional dimension of at least about 1 mm) comprising basalt and/or titanium (e.g., a fiber comprising basalt and/or titanium) and/or particles (e.g., nanoparticles) comprising basalt and/or titanium.
摘要:
Systems and methods related to the determination of one or more mechanical characteristics of a structural element are generally described. In some embodiments, a mechanical characteristic (e.g., a crack, a deformation, an inclusion, etc.) can be determined based at least in part upon the determination of a temperature generated, for example, by passing a current through a network of structures within the structural element. For example, in some embodiments, the structural element can comprise a network of electrically conductive nanostructures and, in some cases, a primary structural material that is not substantially electrically conductive. An electrical current can be passed through the network of electrically conductive nanostructures (e.g., by passing current through an electrical circuit comprising the network of electrically conductive nanostructures). This may result in resistive heating (also known as Joule-effect heating) of the nanostructure network. In some embodiments, a first temperature of the network and/or structural elements can be determined (e.g., via a sensor associated with the electrical circuit). This first temperature can be, in some cases, indicative of a mechanical characteristic of the structural element. In some embodiments, one or more mechanical characteristics of the structural element can be determined based at least in part upon the determination of the first temperature of the structural element.
摘要:
Generally, the present invention provides methods for the production of materials comprising a plurality of nanostructures such as nanotubes (e.g., carbon nanotubes) and related articles. The plurality of nanostructures may be provided such that their long axes are substantially aligned and, in some cases, continuous from end to end of the sample. For example, in some cases, the nanostructures may be fabricated by uniformly growing the nanostructures on the surface of a substrate, such that the long axes are aligned and non-parallel to the substrate surface. The nanostructures may be, in some instances, substantially perpendicular to the substrate surface. In one set of embodiments, a force with a component normal to the long axes of the nanostructures may be applied to the substantially aligned nanostructures. The application of a force may result in a material comprising a relatively high volume fraction or mass density of nanostructures. In some instances, the application of a force may result in a material comprising relatively closely-spaced nanostructures. The materials described herein may be further processed for use in various applications, such as composite materials (e.g., nanocomposites). For example, a set of aligned nanostructures may be formed, and, after the application of a force, transferred, either in bulk or to another surface, and combined with another material (e.g., to form a nanocomposite) to enhance the properties of the material.