Abstract:
In a method for influencing the roll behavior of a motor vehicle having at least one axle with wheels at opposite sides of the motor vehicle, vehicle body movements caused by transverse forces acting at the center of gravity are reduced in that for each vehicle axle wheel, a stabilizer with a hydraulic actuator generating a controllable force is provided and the stabilizer force is transmitted to the respective wheels and vehicle body for counteracting the vehicle body roll movements so as to improve the roll behavior of the vehicle with respect to accuracy and reaction speed.
Abstract:
In a suspension of a vehicle wheel on a vehicle body, including a spring element for accommodating the compressive forces acting between the vehicle wheel and vehicle body and with a linear actuator for adjusting the kinematics and the distance between the vehicle wheel and the vehicle body, the spring element and the linear actuator include at least one tubular contraction element with at least one hydraulic or pneumatic or hydropneumatic pressure chamber enclosed in a casing, which is designed in such a way that a pressure rise in the pressure chamber widens the casing radially and shortens it axially.
Abstract:
A method for influencing the roll response of motor vehicles having at least three wheels, the method using transverse forces acting on the center of gravity to reduce vehicle body motion. A two-part stabilizer for a vehicle axle, in which a hydraulic actuator is integrated, and which can twist the two stabilizer halves with respect to one another, is used. The moment introduced into the stabilizer is transferred to the respective knuckles via the stabilizer leg. A roll moment resulting from the transverse force acting on the vehicle is compensated by this moment. Roll behavior with respect to accuracy and speed of response is improved.
Abstract:
The present invention relates to a delivery pump, in particular for delivering diesel fuel into a high-pressure accumulator. The pump has a housing and a drive shaft which is accommodated in the latter and is mounted by at least one sliding bearing arrangement such that it can rotate about a drive shaft axis. The sliding bearing arrangement is formed by a bearing bore and a bearing shaft section which extends through the latter. The sliding bearing arrangement has a bearing play which extends in the radial direction between the bearing shaft section and the bearing bore and has a smaller value in the bearing center than at least one bearing edge. A delivery pump for delivering diesel fuel is therefore provided which has a low-wear sliding bearing arrangement.
Abstract:
The invention relates to a high-pressure pump, especially for delivering fuel for a common rail fuel injection system. The pump includes at least one cam drive having a feeler element which can be set moving in direction of a stroke axis by a cam geometry introduced into the camshaft, the stroke movement being transmittable to a plunger unit. The plunger unit and the feeler element are impinged upon with a force by a compression spring element in the direction of the cam geometry and the plunger unit has at least one contact surface which adjoins the compression spring element. The at least one contact surface and/or the surface of the compression spring element adjoining the same has a friction-reduced surface coating to bring about a torsion decoupling of the compression spring element.
Abstract:
A hydraulic telescopic shock absorber wherein damping characteristic can be varied by means of an electromagnetic valve arrangement, the coil of which is accommodated so as to be protected against the hydraulic medium of the shock absorber. The control preferably takes place as a function of the pressure difference between the spaces above and below the piston of the shock absorber.
Abstract:
The invention relates to a high pressure pump for a fuel injection device of an internal combustion engine, comprising at least one pump element having a pump piston delimiting a pump working chamber, wherein between the pump piston and a rotationally driven drive shaft of the high pressure pump, a tappet assembly having a tappet body and a roller shoe pressed into a receptacle of the tappet body is provided, wherein the tappet body comprises a centering guide for pressing in the roller shoe. The invention further relates to a tappet assembly for a high pressure pump for a fuel injection device of an internal combustion engine comprising a tappet body and a roller shoe pressed into a receptacle of the tappet body, wherein the tappet body comprises a centering guide for pressing in the roller shoe.
Abstract:
The present invention relates to a delivery pump, in particular for delivering diesel fuel into a high-pressure accumulator. The pump has a housing and a drive shaft which is accommodated in the latter and is mounted by at least one sliding bearing arrangement such that it can rotate about a drive shaft axis. The sliding bearing arrangement is formed by a bearing bore and a bearing shaft section which extends through the latter. The sliding bearing arrangement has a bearing play which extends in the radial direction between the bearing shaft section and the bearing bore and has a smaller value in the bearing center than at at least one bearing edge. A delivery pump for delivering diesel fuel is therefore provided which has a low-wear sliding bearing arrangement.
Abstract:
The invention provides for operation of camshafts, particularly for an injection pump for diesel. A camshaft rotates around a longitudinal axis of a camshaft. The camshaft has at least one cam being in cooperation with a pressure roller driven in a lifting manner. The pressure roller rotates on the peripheral surface of the cam. The upward stroke of the pressure roller is a working stroke during which the pressure roller moves away from the longitudinal axis of the camshaft. During a return stroke the pressure roller moves toward the longitudinal axis of the camshaft. The peripheral surface of the cam has a return stroke section and a working stroke section. The peripheral surface of the return stoke section has a greater friction value than the working stroke section. Thus an operation of camshafts for an injection pump for diesel is provided, securing a rotation of the pressure roller around the circumference of the cam within the whole speed range of the camshaft.
Abstract:
The invention relates to a high-pressure fuel pump for a fuel injection system of an internal combustion engine, having a pump housing and with at least one pump element of a piston which is driven by a cam which interacts with a roller. The free ends of the roller are bounded by two side run-on surfaces which come into contact with mating surfaces during the operation of the high-pressure fuel pump. In order to provide a high-pressure fuel pump which can be produced cost-effectively and has a long service life, the side run-on surfaces are designed as circular ring disc surfaces and, in a central internal region, are released from contact with the mating surfaces.