Abstract:
Aspects of a method and system for processing control channel signals may include calculating at a receiver, for a portion of a sub-frame of each one of a plurality of control channels, first and second quality metrics. A control channel may be selected on the basis of the quality metrics. The calculating and selecting may be done for a first slot of a corresponding sub-frame. A validity of a selected control channel may be determined based on a CRC derived from decoding the selected control channel's sub-frame.
Abstract:
A baseband processing module of a base station includes a Turbo decoding module. The Turbo decoding module decodes a Turbo code word to produce one or more Media Access Control (MAC) packet(s) carried by the turbo decode word. Each MAC packet includes a MAC packet header and the MAC packet payload, which carries one or more Radio Link Control (RLC) Packet Data Units (PDUs). The Turbo decoding module decodes the MAC packet header to determine boundaries of the PDUs carried in the MAC packet payload. The Turbo decoding module decodes RLC PDU headers and RLC PDU payloads of the RLC PDUs. The Turbo decoding module writes the decoded MAC packet header, the decoded RLC PDU headers, and the decoded RLC PDU payloads to memory in a word-aligned format. The Turbo decoding module may also operate in various other Turbo decoding modes.
Abstract:
Various embodiments are disclosed for detecting extended acquisition indicators in a wireless communication device. Acquisition indicator (AI) data is received, including an acquisition indicator (AI), a corresponding AI signature, and a corresponding plurality of extended AI indicators (EAI). The device determines whether channel power corresponding to the received AI signature exceeds a first negative limit. The device determines whether a reliability metric of the extended acquisition indicators exceeds a second limit. If the channel power does not exceed the first negative limit and the reliability metric does not exceed the second limit, the device declares the AI to be an indeterminate indicator that denotes neither acknowledgment nor denial of an access request associated with the received AI data.
Abstract:
A channel receiver operable to implement fractional dedicated physical channel (F-DPCH) for high-speed data packet access is provided. A received RF signal is processed to produce a set of soft symbol outputs. The receiver detects whether transmit power control (TPC) command bits are present in the set of soft symbol outputs. The TPC command bits are conveyed with the RF signal over non-dedicated pilot bits in the processed baseband signal. When TPC command bits are detected, the set of soft symbol outputs are processed to produce estimated TPC command bits. A TPC quality estimate is generated based on the estimated TPC command bits. A signal-to-interference ratio for the WCDMA dedicated physical channel is adjusted based upon a comparison of the TPC quality estimate with a TPC quality target to effect F-DPCH power control.
Abstract:
A baseband processing module of a base station includes a Turbo decoding module. The Turbo decoding module decodes a Turbo code word to produce one or more Media Access Control (MAC) packet(s) carried by the turbo decode word. Each MAC packet includes a MAC packet header and the MAC packet payload, which carries one or more Radio Link Control (RLC) Packet Data Units (PDUs). The Turbo decoding module decodes the MAC packet header to determine boundaries of the PDUs carried in the MAC packet payload. The Turbo decoding module decodes RLC PDU headers and RLC PDU payloads of the RLC PDUs. The Turbo decoding module writes the decoded MAC packet header, the decoded RLC PDU headers, and the decoded RLC PDU payloads to memory in a word-aligned format. The Turbo decoding module may also operate in various other Turbo decoding modes.
Abstract:
A wireless communication device receives acquisition indicator (AI) data, including an acquisition indicator (AI), a corresponding AI signature, and a corresponding plurality of extended AI indicators (EAI). The device determines whether channel power corresponding to the received AI signature exceeds a first negative limit. The device determines whether a reliability metric of the extended acquisition indicators exceeds a second limit. If the channel power does not exceed the first negative limit and the reliability metric does not exceed the second limit, the device declares the AI to be an indeterminate indicator that denotes neither acknowledgment nor denial of an access request associated with the received AI data.
Abstract:
A channel receiver operable to implement fractional dedicated physical channel (F-DPCH) for high-speed data packet access is provided. A received RF signal is processed to produce a set of soft symbol outputs. The receiver detects whether transmit power control (TPC) command bits are present in the set of soft symbol outputs. The TPC command bits are conveyed with the RF signal over non-dedicated pilot bits in the processed baseband signal. When TPC command bits are detected, the set of soft symbol outputs are processed to produce estimated TPC command bits. A TPC quality estimate is generated based on the estimated TPC command bits. A signal-to-interference ratio for the WCDMA dedicated physical channel is adjusted based upon a comparison of the TPC quality estimate with a TPC quality target to effect F-DPCH power control.