Abstract:
Disclosed are various embodiments providing carrier separation to effectuate a dual carrier operation of a wireless communication device. Processing circuitry may acquire a single carrier signal based on a determined time slot boundary, the single carrier signal comprising primary carrier data. The processing circuitry may receive a dual carrier radio frequency signal based on the determined time slot boundary, the dual carrier radio frequency signal comprising the primary carrier data and secondary carrier data. The processing circuitry may then generate a baseband dual carrier signal by demodulating the dual carrier radio frequency signal. The processing circuitry may separate the primary carrier data from the baseband dual carrier signal by filtering the baseband dual carrier signal. The processing circuitry may also separate the secondary carrier data from the baseband dual carrier signal by filtering the baseband dual carrier signal.
Abstract:
Aspects of a method and system for processing control channel signals may include calculating at a receiver, for a portion of a sub-frame of each one of a plurality of control channels, first and second quality metrics. A control channel may be selected on the basis of the quality metrics. The calculating and selecting may be done for a first slot of a corresponding sub-frame. A validity of a selected control channel may be determined based on a CRC derived from decoding the selected control channel's sub-frame.
Abstract:
In some aspects, the disclosure is directed to methods and systems for dense small cell deployment. In one or more embodiments, a plurality of small cells is grouped into a first group of small cells having a first power level and a second group of small cells having a second power level. In one or more embodiments, each power level in the first set of power levels is greater than each power level in the second set of power levels. In one or more embodiments, the small cells of the first group performs frequency domain inter-cell interference coordination (ICIC) between the small cells of the first group. In one or more embodiments, the small cells of the second group performs time domain ICIC with the small cells in the first group. In one or more embodiments, the small cells of the first group use a same almost blank subframe (ABS) pattern.
Abstract:
A channel receiver operable to implement fractional dedicated physical channel (F-DPCH) for high-speed data packet access is provided. A received RF signal is processed to produce a set of soft symbol outputs. The receiver detects whether transmit power control (TPC) command bits are present in the set of soft symbol outputs. The TPC command bits are conveyed with the RF signal over non-dedicated pilot bits in the processed baseband signal. When TPC command bits are detected, the set of soft symbol outputs are processed to produce estimated TPC command bits. A TPC quality estimate is generated based on the estimated TPC command bits. A signal-to-interference ratio for the WCDMA dedicated physical channel is adjusted based upon a comparison of the TPC quality estimate with a TPC quality target to effect F-DPCH power control.
Abstract:
A channel receiver operable to implement fractional dedicated physical channel (F-DPCH) for high-speed data packet access is provided. A received RF signal is processed to produce a set of soft symbol outputs. The receiver detects whether transmit power control (TPC) command bits are present in the set of soft symbol outputs. The TPC command bits are conveyed with the RF signal over non-dedicated pilot bits in the processed baseband signal. When TPC command bits are detected, the set of soft symbol outputs are processed to produce estimated TPC command bits. A TPC quality estimate is generated based on the estimated TPC command bits. A signal-to-interference ratio for the WCDMA dedicated physical channel is adjusted based upon a comparison of the TPC quality estimate with a TPC quality target to effect F-DPCH power control.
Abstract:
Various methods and systems are provided for frequency offset correction. In one example, among others, a method includes determining a phase estimation of a RF signal, rotating a sample of the RF signal based at least in part upon the phase estimation, and determining a channel estimation based upon the rotated sample. The channel estimation may be derotated based at least in part upon the phase estimation. In another example, a communication device includes a phase rotator configured to rotate RF signal samples based upon a rotation offset, a channel estimation filter configured to determine channel estimates, and a phase derotator configured to rotate the channel estimates based upon another rotation offset. Another example of a communication device includes a differential detector configured to determine conjugate multiply results, an averaging filter configured to sum the results, and a phase estimator configured to determine a phase estimation based upon the sum.