Abstract:
A detection element, a manufacturing method thereof and a flat panel detector are disclosed. The detection element includes: a base substrate; a photodiode on the base substrate, the photodiode includes: a first electrode on the base substrate; a photoelectric conversion layer on a side of the first electrode away from the base substrate; a transparent electrode and a second electrode electrically connected with the transparent electrode on a side of the photoelectric conversion layer away from the first electrode. Besides, an orthographic projection of the photoelectric conversion layer on the base substrate completely falls within an orthographic projection of the first electrode on the base substrate; the photoelectric conversion layer includes a sidewall, an orthographic projection of the sidewall of the photoelectric conversion layer on the base substrate is at least partially overlapped with an orthographic projection of the second electrode on the base substrate.
Abstract:
A sensor, a manufacturing method thereof and an electronic device. The sensor includes: a base substrate; a thin-film transistor (TFT) disposed on the base substrate and including a source electrode; a first insulation layer disposed on the TFT and provided with a first through hole running through the first insulation layer; a conductive layer disposed in the first through hole and on part of the first insulation layer and electrically connected with the source electrode via the first through hole; a bias electrode disposed on the first insulation layer and separate from the conductive layer; a sensing active layer respectively connected with the conductive layer and the bias electrode; and an auxiliary conductive layer disposed on the conductive layer. The sensor and the manufacturing method thereof improve the conductivity and ensure normal transmission of signals by arranging the auxiliary conductive layer on the conductive layer without addition of processes.
Abstract:
A dual view-field display and a fabricating method and a driving method thereof are provided. The dual view-field display includes a color filter substrate and an array substrate which are oppositely disposed. A slit grating is disposed on a side of the color filter substrate or the array substrate, and the color filter substrate includes a plurality of pixel units and a first black matrix surrounding each pixel unit. The slit grating includes light-shielding regions and light-transmitting regions, which are arranged at intervals in a matrix. The dual view-field display further comprises a light blocking portion configured for preventing light rays from leaking out of an upper-edge region and/or a lower-edge region of the light-transmitting region, which solves a problem that a viewing angle of a user of the dual view-field display is limited.
Abstract:
A double-vision-device alignment device and a double-vision-device alignment method are provided. The double-vision-device alignment device is configured to accurately align a display pan& with a double-vision device, and comprising; a first chromaticity detecting unit, configured to detect a color in a first viewing region; a second chromaticity detecting unit, configured to detect a color in a second viewing region, wherein the first viewing region and the second viewing region are formed by light splitting of the double-vision device, and the first viewing region and the second viewing region correspond to different display regions of the display panel, respectively. It is judged whether an alignment is accurate by detection of a chromaticity detecting unit, which can prevent an alignment result from being affected by human factors, improve accuracy and efficiency, and reduce labor intensity, and the device can be operated by non-professionals.
Abstract:
A detection panel and a manufacturing method thereof are disclosed. The detection panel (200) includes a first substrate (21) and a second substrate (22), and the first substrate (21) includes a light detection layer (213); the second substrate (22) includes a drive circuit (205); the first substrate (21) and the second substrate (22) are opposite to each other for cell assembly, and the drive circuit (205) is coupled to the light detection layer (213) to read a photosensitive signal generated by the light detection layer (213). By forming the light detection layer (213) and the drive circuit (205) on different substrates, the detection panel (200) contributes to increase the flatness of the light detection layer (213) and reduce the defects of the light detection layer (213), thereby reducing the leakage current in a dark state and improving the performance of the detection panel (200).
Abstract:
Disclosed are an array substrate, a manufacturing method thereof, a sensor and a detection device. The array substrate includes: a base substrate; a thin-film transistor (TFT) being disposed on the base substrate and including a source electrode and an active layer; a passivation layer disposed on the TFT; a first metal layer disposed on the passivation layer; an insulating layer disposed on the first metal layer; a through hole structure running through the insulating layer, the first metal layer and the passivation layer; and a detection unit being disposed on the insulating layer and including a second metal layer, wherein the second metal layer makes direct contact with the source electrode via the through hole structure.
Abstract:
A liquid crystal lens, a fabrication method thereof and a display device are provided, the liquid crystal lens comprises: a first substrate (1); a second substrate (2), opposed to the first substrate (1); a liquid crystal layer (3), interposed between the first substrate (1) and the second substrate (2); a first transparent electrode layer (5), located on a side of the first substrate (1) close to the liquid crystal layer (3); a planarization layer (6), located on a side of the first transparent electrode layer (5) close to the liquid crystal layer (3); a first alignment layer (4), located on a side of the planarization layer (6) close to the liquid crystal layer (3); a second transparent electrode layer (7), disposed on a side of the second substrate (2) close to the liquid crystal layer; a second alignment layer (8), disposed on a side of the second transparent electrode layer (7) close to the liquid crystal layer (3). The first alignment layer (4) is moved to a position where an lateral electric field is weaker, by forming the planarization layer (6) between the first transparent electrode layer (5) and the first alignment layer (4), which thus reduces a liquid crystal phase deviation and improves a refractive effect of the liquid crystal lens.
Abstract:
A flat panel detector and a manufacturing method thereof. The flat panel detector includes a first substrate and a second substrate. The first substrate includes a driving circuit, the second substrate includes a photosensitive element, the first substrate and the second substrate are arranged opposite to each other so as to be assembled, and the driving circuit is electrically connected with the photosensitive element to drive the photosensitive element. The flat panel detector not only can improve the filling rate of a photodiode in a pixel unit and increase the photosensitive area of the pixel unit in the flat panel detector, but also can effectively prevent static electricity and scratches generated during use and improve the photoelectric characteristics and yield of the flat panel detector.
Abstract:
A hole structure and a fabrication method thereof, an array substrate and a fabrication method thereof, a detection device and a display device are provided. The fabrication method of the hole structure includes: performing a first photolithography process on a first initial thin film with a pattern region of a mask to form a first thin film and a first hole located therein, and performing a second photolithography process on a second initial thin film covering the first thin film with the pattern region of the mask to form a second thin film and a second hole running through the second thin film and communicating with the first hole; a dimension of a second opening of the second hole away from a base substrate is larger than a dimension of a first opening of the second hole close to the base substrate.
Abstract:
A display device and driving method thereof are disclosed. The display device includes a display screen, including a plurality of sub-pixels arranged in the form of a matrix, colors of the sub-pixels in the same column including all colors necessary for display by the display screen; a grating disposed on top of the display screen, including light-transmissive regions and light-shading regions that are arranged alternately, the light-transmissive regions being in parallel to each column of the sub-pixels; a rolling structure, located between the display screen and the grating; and a push mechanism, for pushing the grating and/or the display screen, so that relative position of the grating and the display screen is switchable between a first state and a second state, and switchover between a dual viewing field display effect and an anti-spy display effect is achieved for the display device.