Abstract:
Embodiments of the present disclosure provide a transfer device, a curing system with the transfer device and a curing method using the curing system. The transfer device includes: a mount; a rotary stage mounted to the mount and configured to be rotatable about a first axis; and a rotary table mounted to the rotary stage and configured to be rotatable about a second axis.
Abstract:
Embodiments of the invention provide an array substrate, a display device and a manufacturing method of the array substrate. The array substrate comprises a substrate (10) and a plurality of electrostatic discharge short-circuit rings (20) provided on the substrate. Each of the electrostatic discharge short-circuit rings (20) comprises a gate electrode (22), a gate insulating layer (26), an active layer (21), a source electrode (23), a drain electrode (24) and a passivation layer (30). Each of the electrostatic discharge short-circuit ring (20) further comprises a transparent conductive layer (25) for connecting the gate electrode (22) and the drain electrode (24), and the transparent conductive layer (25) is provided below the passivation layer (30).
Abstract:
An array substrate includes a GOA circuit area and a display area, the GOA circuit area includes a TFT area and a lead-wire area, the display area includes a data line and a gate line. The GOA circuit area is provided with at least one first via and at least one second via, a data-line metal layer is disposed at the bottom of the at least one first via, and a gate-line metal layer is disposed at the bottom of the at least one second via. The GOA circuit area further includes a first electrode and a second electrode, the data-line metal layer is electrically connected to one electrode through the at least one first via, the gate-line metal layer is electrically connected to the other electrode through the at least one second via, such that a capacitor is formed between the first electrode and the second electrode.
Abstract:
A manufacturing method of the light guide plates, a light guide plate made by the method and a double-side display device comprising the light guide plate. The manufacturing method of a light guide plate comprises: forming a plurality of alternating first grooves (101) and second grooves (102) on a surface of a transparent substrate (100); forming a first reflective layer (300) on a surface of the first groove (101); and forming a transparent protective layer (500) on the entire surface of the substrate. According to the present disclosure, a light guide plate is provided that can be used in the double-side display device.
Abstract:
The present disclosure provides a conductive agent and a module bonding method. In the method, a conductive agent is sprayed to a bonding region. The conductive agent comprising a liquid ultraviolet curable adhesive and conductive particles dispersed in the ultraviolet curable adhesive. A module layer is pre-pressed onto the bonding region with the conductive agent between the module layer and the bonding region. The conductive agent is cured by irradiating the conductive agent with ultraviolet rays and pressurizing the conductive agent, so that the module layer is electrically connected and bonded to the bonding region.
Abstract:
The present disclosure provides a Thin Film Transistor Array Substrate and a Liquid Crystal Display apparatus thereof, and relates to the technical field of liquid crystal displaying. The Thin Film Transistor Array Substrate of the present disclosure includes a plurality of gate lines and a plurality of data lines, wherein regions surrounded by the gate lines and the data lines are pixel regions, and wherein a high level common voltage line being used when signal on the data line is at a low level and a low level common voltage lines being used when signal on the data line is at a high level are also arranged in parallel to the gate lines in each of the pixel regions. With the Thin Film Transistor Array Substrate of the present disclosure, the Greenish phenomenon in the existing liquid crystal display apparatus may be effectively solved.
Abstract:
A shift register unit, a method of driving a shift register unit, a gate driving circuit, and a display device are disclosed. The shift register unit includes an input circuit and an output circuit. The input circuit is configured to write an input signal of the input terminal to the first node in response to an input control signal, so as to control a level of the first node. The output circuit is configured to receive a clock signal of the clock signal terminal and output a scanning signal through the pixel signal output terminal under control of the level of the first node. The output circuit includes a variable resistor, and the variable resistor is configured to adjust a level of the scanning signal according to a resistance value of the variable resistor.
Abstract:
A method for compensating a threshold voltage drift of a thin film transistor comprises: controlling a drain and a gate of the thin film transistor to have a same voltage; and keeping the voltage at the gate of the thin film transistor unchanged and controlling the voltage at the drain of the thin film transistor to be equal to a voltage at a source of the thin film transistor.
Abstract:
The present invention relates to an array substrate and a manufacture method of the same, a liquid crystal display panel, and a display device, which are relative to a liquid crystal display field. Further, source electrodes and drain electrodes of the array substrate are arranged on different layers. In the manufacture method of the array substrate, the source electrodes and the drain electrodes are formed on different layers by two patterning processes. According to the technical scheme of the present invention, a length of a channel between the source electrodes and the drain electrodes can be decreased as much as possible, thereby increasing a start current Ion of a TFT.