Abstract:
A process for production of acrylic acid includes preparing a product gas mixture by a catalytic gas-phase oxidation of a C3 precursor; cooling and contacting the cooled product gas mixture in an absorption column having at least two cooling loops in countercurrent with an absorbent to obtain an absorbate A, containing the absorbent and absorbed acrylic acid; condensing a high boiler fraction of the product gas mixture in a first cooling loop; condensing a low boiler fraction of the product gas mixture in a second cooling loop; maintaining a temperature of the absorbate A in the second cooling loop at a value of at least 56° C.; removing an acid water stream comprising glyoxal from the absorption column at a side take-off located above the second cooling loop; and removing a stream F of absorbate A from the absorption column at a side take-off, located at a height of the absorption column between the first cooling loop and the second cooling loop.
Abstract:
A continuous process for preparing (meth)acrylates of C10-alcohol mixtures by reaction of glacial (meth)acrylic acid with an isomer mixture of C10-alcohols composed of 2-propylheptanol as the main isomer and at least one of the C10-alcohols 2-propyl-4-methylhexanol, 2-propyl-5-methylhexanol, 2-isopropylheptanol, 2-isopropyl-4-methylhexanol, 2-isopropyl-5-methylhexanol and/or 2-propyl-4,4-dimethylpentanol, and the use of a diester of dicarboxylic acids which have been esterified with N-oxyl-containing compounds as polymerization inhibitors in such a process.
Abstract:
In a method of stabilizing acrylic compounds, a liquid phase containing at least one acrylic compound is mixed with at least one metal and at least one ligand. The acrylic compound can be acrylic acid, methacrylic acid, and their respective esters. The metal can be copper, manganese, and cerium. The ligand can be a quinoline compound of formula (I), an N-oxide of a compound of formula (I), 2,2″-bis(2,3-dihydro-3-oxoindolylidene), or an aliphatic y-dentate ligand with y being 2-6 and comprising at least two nitrogen atoms joined by aliphatic or aromatic C1-C4 bridges comprising y-2 further coordinating nitrogen atoms or heteroatoms: where X is OH, NH2, O—(C1-C4)-alkyl, O—C(O)—(C1-C4)-alkyl, or O—C(O)-phenyl; R1 is H, or (C1-C4)-alkyl; R2 is H, (C1-C4)-alkyl, Cl, Br, or SO3H; and R3 is H, Cl or Br.