Abstract:
Described is a process of making pseudoionone and hydroxy pseudoionone comprising the steps of (i) preparing a first aqueous mixture comprising first concentrations of acetone, citral and hydroxide, (ii) producing a second aqueous mixture by allowing to react for a reaction time the components of the first aqueous mixture and (iii) producing a third aqueous mixture by adding to the second aqueous mixture a second amount of hydroxide so that an additional amount of pseudoionone is formed in the third aqueous mixture. The invention further suggests an apparatus for making pseudoionone and hydroxy pseudoionone as well as to a respective process and use of said apparatus in making pseudoionone and hydroxy pseudoionone.
Abstract:
The present invention relates to tetrahydropyranyl lower akyl esters and specifically to tetrahydropyranyl acetates, a method for preparation thereof using ketene and use thereof as fragrances and aroma substances.
Abstract:
The present invention relates to a method for preparing tetrahydropyranyl esters from the corresponding 4-hydroxytetrahydropyran compounds by reaction with a ketene compound.
Abstract:
The present invention relates to a method for the production of 2-substituted 4-hydroxy-4-methyltetrahydropyrans from the acid-catalyzed reaction of 3-methylbut-3-ene-1-ol with an aldehyde, a stable odoriferous quality being achieved and avoiding off-odors that interfere with the odor sensation.
Abstract:
The invention relates to an apparatus (1) for producing pseudoionone and hydroxy pseudoionone. It suggests an apparatus (1) comprising first and second substantially vertically oriented reactor chambers oriented such that components flow through the first and second reactor chambers in different directions, wherein the first reactor chamber (13) is configured to receive a first component feed (C1) containing a first aqueous mixture through an inlet (15), and to produce a second aqueous mixture, and wherein the apparatus (1) comprises a mixing device (17) positioned downstream of the first component feed inlet (15) and configured to add a second component feed (C2) to the first component feed (C1) when the second aqueous mixture has formed, and the second reactor chamber (23) is configured to receive the first and second component feeds unified in the mixing device (17) from the first reactor chamber (13) and to produce a third aqueous mixture from the first and second aqueous mixtures. The invention further suggests a method and a use for producing pseudoionone and hydroxy pseudoionone.
Abstract:
The present invention relates to the use of isomerically pure or highly isomerically enriched cis- or trans-(2-isobutyl-4-methyltetrahydropyran-4-yl) acetate for use as aroma chemicals. The invention further relates to a process for the preparation of isomerically pure or highly isomerically enriched cis- or trans-(2-isobutyl-4-methyltetrahydropyran-4-yl) acetate and the products obtainable by this process. The invention further relates to a fragrance or aroma substance composition which comprises isomerically pure or highly isomerically enriched cis- or trans-(2-isobutyl-4-methyltetra-hydropyran-4-yl) acetate, a method for imparting, and/or boosting an odor or taste of a product, and also perfumed or aromatized products which comprise isomerically pure or highly isomerically enriched cis- or trans-(2-isobutyl-4-methyltetrahydropyran-4-yl) acetate.
Abstract:
The invention relates to a method for producing 2-substituted 4-methyltetrahydropyrans of general formula (I) from starting materials containing at least one 2-substituted 4,4-dimethyl-1,3-dioxane of general formula (II).