Abstract:
Disclosed herein is an aqueous composition including tin ions, optionally alloy metal ions selected from the group consisting of silver, indium, and bismuth ions and at least one additive of formula L1a
Abstract:
An organic electronic device, preferably an organic light-emitting diode (OLED), comprising at least one metal-carbene complex comprising one, two or three specific bidentate diazabenzimidazole carbene ligands; a light-emitting layer comprising said metal-carbene complex as emitter material, preferably in combination with at least one host material; the use of said metal-carbene complex in an OLED; an apparatus selected from the group consisting of stationary visual display units, mobile visual display units, illumination units, units in items of clothing, units in handbags, units in accessories, units in furniture and units in wallpaper comprising said organic electronic device, preferably said OLED, or said light-emitting layer; the metal-carbene complex comprising one, two or three specific bidentate diazabenzimidazole carbene ligands mentioned above and a process for the preparation of said metal-carbene complex.
Abstract:
The present invention relates to metal-carbene complexes of the general formula (I), where variable M is Ir or Pt and that are characterized by variable R being a group of formula (a). The complexes are used in organic electronic devices, especially OLEDs (Organic Light-Emitting Diodes), illuminating elements, stationary visual display units and in material layers as emitter, charge transport material and/or charge or exiton blocker.
Abstract:
The present invention relates to heteroleptic complexes comprising a phenylimidazole or phenyltriazole unit bonded via a carbene bond to a central metal atom, and phenylimidazole ligands attached via a nitrogen-metal bond to the central atom, to OLEDs which comprise such heteroleptic complexes, to light-emitting layers comprising at least one such heteroleptic complex, to a device selected from the group consisting of illuminating elements, stationary visual display units and mobile visual display units comprising such an OLED, to the use of such a heteroleptic complex in OLEDs, for example as emitter, matrix material, charge transport material and/or charge blocker.
Abstract:
A cyclometallated Ir complex comprising one, two or three ligands of formula (I) or (I′) substituted at the R5 and R7 position; an organic electronic device comprising at least one inventive cyclometallated Ir complex; a light-emitting layer comprising at least one inventive cy-clometallated Ir complex; the use of the inventive cyclometallated Ir complex in an OLED; an apparatus selected from the group consisting of stationary visual display units, mobile visual display units, illumination units, units in items of clothing, units in handbags, units in accessories, units in furniture and units in wallpaper, comprising the organic electronic device; and a process for preparing a the inventive cyclometallated Ir complex.
Abstract:
Disclosed herein is an aqueous composition including tin ions, optionally alloy metal ions, and at least one antioxidant of formula X1a or of formula L1b or of formula L1c or of formula L1d or of formula L1e or the tautomeric forms of formulas X1b, X1c, X1d, and X1e, where no further metal ions are present in the composition besides tin ions and at least one of silver, indium, and bismuth ions; and where the composition does not include any reducing agents besides the compounds of formulas X1a to X1e.
Abstract:
Heteroleptic carbene complexes and the use thereof in organic electronics The present invention relates to heteroleptic complexes comprising a phenylimidazole or phenyltriazole unit bonded via a carbene bond to a central metal atom, and phenylimidazole ligands attached via a nitrogen-metal bond to the central atom, to OLEDs which comprise such heteroleptic complexes, to light-emitting layers comprising at least one such heteroleptic complex, to a device selected from the group consisting of illuminating elements, stationary visual display units and mobile visual display units comprising such an OLED, to the use of such a heteroleptic complex in OLEDs, for example as emitter, matrix material, charge transport material and/or charge blocker.
Abstract:
The present invention relates to heteroleptic complexes comprising a phenylimidazole or phenyltriazole unit bonded via a carbene bond to a central metal atom, and phenylimidazole ligands attached via a nitrogen-metal bond to the central atom, to OLEDs which comprise such heteroleptic complexes, to light-emitting layers comprising at least one such heteroleptic complex, to a device selected from the group consisting of illuminating elements, stationary visual display units and mobile visual display units comprising such an OLED, to the use of such a heteroleptic complex in OLEDs, for example as emitter, matrix material, charge transport material and/or charge blocker.
Abstract:
The present invention relates to white organic light-emitting devices having separate stacked blue/green phosphorescent and red phosphorescent layers. The white organic light-emitting devices emit the desired natural white color and show a reduced power consumption, superior current efficiency, efficacy, external quantum efficiency (EQE) and/or lifetime. In particular, the efficiency of the white organic light emitting device is improved and at the same time the lifetime of the white organic light emitting device is increased.